1. (20 points) Recall the inductive definition for the set, S, of all strings in $\{0,1\}^{*}$ with an equal number of 1 's and 0's (see the September 8 lecture notes): w is in S iff

- $w=\epsilon$; or
- There is a string x in S such that $w=0 x 1$ or $w=1 x 0$; or
- There are strings x and y in S such that $w=x y$.
(a) (10 points) Give an inductive definition for a set, T, that contains all strings that have more 1's than 0's.

Solution: String w is in T iff

- There are strings x and y in S such that $w=x 1 y$, where S is the set of all string with an equal number of ones and zeros as defined in the problem statement.
- There are strings x and y in T such that $w=x y$.
(b) (10 points) Give a proof that your solution to part (a) is correct.

Solution:

Let $\operatorname{numOne}(w)$ denote the number of 1 's in string w and $\operatorname{numZero}(w)$ denote the number of 0 's. We prove that T is the set of all strings that have more 1's than 0 's by showing the set inclusion in each directions.
Every string in T has more 1's than 0s:
Proof by induction on the derivation of the string.
Let $w \in T$ be a string. There are two cases to consider:

$$
\exists x, y \in S . w=x 1 y
$$

1. $\operatorname{numZero}(x)=\operatorname{numOne}(x)$,
S is the set of strings with an equal number of 0's and 1's.
2. numZero(y) $=\operatorname{numOne}(y)$, same as for step 1
3. $\operatorname{numZero}(w)=\operatorname{numZero}(x)+\operatorname{numZero}(y)$,
$\mathrm{w}=\mathrm{x} 1 \mathrm{y}$
4. numOne $(w)=$ numOne $(x)+1+$ numOne (y),
$w=x 1 y$
5. numOne $(w)=\operatorname{numZero}(w)+1$,
subsitition, 1-4
6. numOne $(w)>\operatorname{numZero}(s)$,
step 4
It is also acceptable to write the equivalent proof in English:
It was shown (in the Sept. 11 notes) that for any string s in S, the number of 0's and 1's in s are equal. Thus, x has an equal number of 0's and 1's as does y. The number of 0 's in w is the total number of 0 's in x and y. The number of 1 's in w is one greater than the total number in x and y. Thus, The number of 1 's in w is one greater than the number of 0 's in w which means that w has more 1's than 0's.

$$
\exists x, y \in T . w=x y:
$$

1. $\operatorname{num} \operatorname{One}(x)>\operatorname{numZero}(x), \quad$ induction hypothesis: $x \in T$
2. numOne $(y)>\operatorname{numZero}(y), \quad \quad$ induction hypothesis: $x \in T$
3. $\operatorname{numOne}(w)=\operatorname{numOne}(x)+\operatorname{numOne}(y), \quad \mathrm{w}=\mathrm{xy}$
4. $\operatorname{numZero}(w)=\operatorname{numZero}(x)+\operatorname{numZero}(y), \quad \mathrm{w}=\mathrm{xy}$
5. numOne $(w)>\operatorname{numZero}(w)$, substitution and addition, 1-4

Again, a proof written in English prose acceptable. The use of the induction hypothesis should be clearly indicated.
We've shown for both cases that $n u m O n e(w)>\operatorname{numZero}(w)$. Therefore, every string in T has more ones than zeros.

Every string that has more 1's than 0 's is in T :
Let w be a string that has more 1's than 0's. Let x be the shortest prefix of w that has more 1 's than zeros - note that w has this property so such a prefix must exist. Furthermore, x must have exactly one more 1 than 0 , and x must end with a 1 . Thus, we can choose u such that $x=u 1$, and $u \in S$. Now, choose y such that $w=x y$. Note that numOne $(y) \geq n u m Z e r o(y)$. We consider two cases:
numOne $(y)=\operatorname{numZero}(y)$: This means that $y \in S$. We now have $w=u 1 y$ with $u, y \in S$. Thus, the first case in the definition of T applies, and $w \in T$.
numOne $(y)>\operatorname{numZero}(y)$: This means that $y \in T$. Furthermore, $x=u 1 \epsilon$, and u and ϵ are both in S. Therefore, $x \in T$ by the first case in the definition of T. Having shown that x and y are both in T, we conclude that $x y \in T$ using hte second case in the definition of T. This shows that $w \in T$.
We've shown for both cases that $w \in T$. Therefore, every string in that has more 1 's than 0 's is in T.
We've shown that every string in T has more ones than zeros and that every string that has more ones than zeros is in T. Thus, T is the set of all strings that have more ones than zeros.
I've been careful to put "wrap-up" statements at the end of each part of the proof. Acceptable solutions can omit those when they are clear and be somewhat less detailed than mine.
2. (20 points) Let $\Sigma=\{0,1,2\}$. Let $\subseteq \Sigma^{*} H$ be the language that contains a string w iff

- $w=\epsilon$; or
- There are strings x and y in H such that $w \in\{0 x 1 y 2,0 x 2 y 1,1 x 0 y 2,1 x 2 y 0,2 x 0 y 1,2 x 1 y 0\}$.
(a) (10 points) Prove that for each string, w in H, the number of 0 's, 1's and 2's in w are all equal to each other.
Solution: Let $n u m Z e r o(w)$, numOne (w) and $n u m T w o(w)$ denote respectively the number of 0 's, 1's and 2's in w. Let $w \in H$ be a string. To show that $\operatorname{numZero}(w)=\operatorname{numOne}(w)=\operatorname{numTwo}(w)$, there are two cases to consider according to the definition of H :
$w=\epsilon: \operatorname{numZero}(w)=\operatorname{numOne}(w)=\operatorname{numTwo}(w)=0$.
$w \in\{0 x 1 y 2,0 x 2 y 1,1 x 0 y 2,1 x 2 y 0,2 x 0 y 1,2 x 1 y 0\}$: We consider the case where $w=0 x 1 y 2$, the other cases are equivalent. We have:

$$
\begin{aligned}
& \text { 1. } \operatorname{numZero}(w)=1+\operatorname{numZero}(x)+\operatorname{numZero}(y), \quad w=0 x 1 y 2 \\
& \text { 2. numOne }(w)=1+\operatorname{numOne}(x)+\text { numOne }(y), \quad w=0 x 1 y 2 \\
& =1+\operatorname{numZero}(x)+\operatorname{numZero}(y) \text {, induction hypothesis: } \\
& \operatorname{numOne}(x)=\operatorname{numZero}(x) \\
& \text { and } \operatorname{numOne}(y)=\operatorname{numZero}(y) \\
& \text { substitution, step } 1 \\
& \text { 3. numTwo }(w)=1+\operatorname{numTwo}(x)+\operatorname{numTwo}(y) \text {, } \\
& =1+\operatorname{numZero}(x)+\operatorname{numZero}(y) \text {, } \\
& \text { induction hypothesis: } \\
& \operatorname{numTwo}(x)=\operatorname{numZero}(x) \\
& \text { and } \operatorname{numTwo}(y)=\operatorname{numZero}(y) \\
& \text { substitution, step } 1 \\
& \text { steps } 2 \& 3
\end{aligned}
$$

This completes the proof.
(b) (10 points) Does H contain all strings that have an equal number of 0 's, 1's and 2's? Give a short proof for your answer.

Solution: H does not contain all strings that have an equal number of 0 's, 1 's and 2 . For example, H does not include the string $\mathbf{0 1 2 2 1 0}$.
Proof: The first rule for H produces the empty string. All strings produced by the second rule have first and last symbols that differ. Neither rule can produce the string $\mathbf{0 1 2 2 1 0}$.
An acceptable proof would be:
There are no strings in H for which the first and last symbol are the same.
or
If $w \in H$ and $w \neq \epsilon$, then the first and last symbols of w are different.
3. (30 points) Let $\Sigma=\{a, b\}$. Figure 1 depicts three finite state machines that read inputs from this alphabet. Let L_{a}, L_{b}, and L_{c} be the languages accepted by DFA (a), DFA (b), and DFA (c) respectively.
(a) (9 points) For each of L_{a}, L_{b}, and L_{c}, list three strings in Σ^{*} that are in the language and three strings in Σ^{*} that are not in the language.

Solution:

L_{a} : The strings a, aa and aaa are in L_{a}.
The strings b, ab and bb are not in L_{a}.
L_{b} : The strings aa, baa and baabaa are in L_{b}.
The strings b, ab and bb are not in L_{b}.
L_{c} : The strings aaa, aaaa and baaa are in L_{c}.
The strings b, ab and bb are not in L_{c}.
(b) (12 points) Write a short description of each of the languages, L_{a}, L_{b} and L_{c}.

Solution:

$L_{a}: w \in L_{a}$ iff w ends with an a.
$L_{b}: w \in L_{b}$ iff w ends with two a's followed by zero or more repetitions of ba.
It is not correct to say that L_{b} is the set of all strings that end with two a's. For example, the string a aba is in L_{b}, but it does not end with two a's.
L_{c} : For this one, it's convenient to define two other languages first. Let $L_{b a}$ be the language of all strings consisting of zero or more repetitions of ba; for example ϵ, ba, and babababa are in $L_{b a}$. Let $L_{b b a-a}$ be the language of all strings of the form bba y a where $y \in L_{b a}$. Using these definitions, a string w is in L_{c} iff w ends with a suffix of the form aa y a z where $y \in L_{b a}$ and is the concatenation of zero or more strings from $L_{b a}$ or $L_{b b a-a}$.
Explanation: Let z be the suffix of as string w as described above. The aa at the beginning of z moves the machine to state 2 . The string y moves the machine back and forth between states 1 and 2 any number of times (perhaps zero), ending in state 2 . The next a moves the machine to state 3. Once the machine has reached state 3, any string from $L_{b a}$ moves the machine back and forth between states 2 and 3 any number of times (perhaps zero). Likewise, as string from $L_{b b a-a}$ brings the machine back to state 1 (with the bb) then forward to state 2 (with the a) and eventually back to state 3 (with the final a).
Note that we don't have to worry about strings that take the machine all the way back to state 0 we can just start again with a later suffix.
By the time that this is posted, we will have seen regular expressions. I wrote my description without using regular expressions. Here's the same descriptions written as regular expressions:

$$
\begin{aligned}
& L_{a}=\Sigma^{*} \mathrm{a} \\
& L_{b}=\Sigma^{*} \mathrm{aa}(\mathrm{ba})^{*} \\
& L_{c}=\Sigma^{*} \mathrm{aa}(\mathrm{ba})^{*} \mathrm{a}\left(\mathrm{ba} \cup\left(\mathrm{bba}(\mathrm{ba})^{*} \mathrm{a}\right)\right)^{*}
\end{aligned}
$$

(c) $\mathbf{(9}$ points)

Is $L_{a}=L_{b}, L_{a} \subset L_{b}, L_{a} \supset L_{b}$, or none of these?
Is $L_{b}=L_{c}, L_{b} \subset L_{c}, L_{b} \supset L_{c}$, or none of these?
Is $L_{a}=L_{c}, L_{a} \subset L_{c}, L_{a} \supset L_{c}$, or none of these?
Give a short justification of your answers.
Solution: $L_{a} \supset L_{b} \supset L_{c}$.
Any string in L_{b} ends with an a and is therefore in L_{a}. Conversely, the string a is in L_{a} but not in L_{b}; thus the superset relation, $L_{a} \supset L_{b}$ is strict.
Let δ_{b} and δ_{c} be the state transition functions for $\mathrm{DFA}($ a $)$ and $\mathrm{DFA}(\mathrm{b})$ respectively. I'll now show by induction that for all strings, w,

$$
\delta_{c}(0, w)-1 \leq \delta_{b}(0, w) \leq \delta_{c}(0, w)
$$

My proof is (of course) by induction - in this case on w.
$w=\epsilon: \delta_{b}(0, \epsilon)=0=\delta_{c}(0, \epsilon)$.
$w=x \cdot c:$
If $c=a$ and $\delta_{b}(0, x)<2$, Both machines move one to the right and the induction hypothesis is maintained.
If $c=$ a and $\delta_{b}(0, x)=2, \mathrm{DFA}(\mathrm{b})$ stays in state $2 . \mathrm{DFA}(\mathrm{c})$ must have been in state 2 or 3 after reading x, and moves to state 3 after reading the a. The induction hypothesis is maintained.
If $c=\mathrm{b}$ and $\delta_{b}(0, x)>0$, Both machines move one to the left and the induction hypothesis is maintained.
If $c=\mathrm{b}$ and $\delta_{b}(0, x)=0, \mathrm{DFA}(\mathrm{b})$ stays in state 0 . DFA(c) must have been in state 0 or 1 after reading x, and moves to state 0 after reading the a. The induction hypothesis is maintained.
Now, consider $w \in L_{c}$. This means that $\delta_{c}(0, w)=3$. By the result that we just proved by induction,

$$
2 \leq \delta_{b}(0, w) \leq 3
$$

but $\delta_{b}(0, w)$ must be less than 3. Therefore, $\delta_{b}(0, w)=2$ which means that DFA(b) accepts w. Therefore $w \in L_{b}$.
The string aa is in L_{b} but not in L_{a}. This shows that the superset relationship, $L_{b} \supset L_{c}$ is strict.
I'll also accept a solution that doesn't set up a formal induction proof. For example:
Let w be a string in L_{c}. As noted earlier, this means that w ends with two a's followed by zero or more repetitions of ba followed by an a followed by zero or more repetitions of ba. Note that we can find strings x and y such that

- $w=x y$;
- x ends with two a's followed by zero or more repetitions of ba followed by an a,
- y consists of zero or more repetitions of ba.

Any such x must end with two consecutive a's (just consider the cases for zero repetitions of ba and more than zero repetitions). Therefore, $x y$ is a string that ends with two a's followed by zero or more repetitions of ba. Thus, $x y \in L_{b}$.
Of course, an example to show that the subset relationship is strict is still required.

Figure 1: Finite state machines for question 3

