
CpSc 421 Homework 0 Solution

1. (20 points) Recall the inductive definition for the set,S, of all strings in{0, 1}∗ with an equal number of1’s
and0’s (see the September 8 lecture notes):w is in S iff

• w = ǫ; or

• There is a stringx in S such thatw = 0x1 or w = 1x0; or

• There are stringsx andy in S such thatw = xy.

(a) (10 points) Give an inductive definition for a set,T , that contains all strings that have more1’s than0’s.

Solution: Stringw is in T iff
• There are stringsx andy in S such thatw = x1y, whereS is the set of all string with an equal

number of ones and zeros as defined in the problem statement.
• There are stringsx andy in T such thatw = xy.

(b) (10 points) Give a proof that your solution to part (a) is correct.

Solution:
Let numOne(w) denote the number of1’s in stringw andnumZero(w) denote the number of0’s.
We prove thatT is the set of all strings that have more1’s than0’s by showing the set inclusion in
each directions.
Every string inT has more1’s than0s:

Proof by induction on the derivation of the string.
Let w ∈ T be a string. There are two cases to consider:
∃x, y ∈ S. w = x1y:

1. numZero(x) = numOne(x), S is the set of strings with an equal
number of0’s and1’s.

2. numZero(y) = numOne(y), same as for step 1
3. numZero(w) = numZero(x) + numZero(y), w = x1y
4. numOne(w) = numOne(x) + 1 + numOne(y), w = x1y
5. numOne(w) = numZero(w) + 1, subsitition, 1-4
5. numOne(w) > numZero(s), step4

It is also acceptable to write the equivalent proof in English:
It was shown (in the Sept. 11 notes) that for any strings in S, the number of0’s and1’s in
s are equal. Thus,x has an equal number of0’s and1’s as doesy. The number of0’s in w

is the total number of0’s in x andy. The number of1’s in w is one greater than the total
number inx andy. Thus, The number of1’s in w is one greater than the number of0’s in
w which means thatw has more1’s than0’s.

∃x, y ∈ T. w = xy:

1. numOne(x) > numZero(x), induction hypothesis:x ∈ T

2. numOne(y) > numZero(y), induction hypothesis:x ∈ T

3. numOne(w) = numOne(x) + numOne(y), w = xy
4. numZero(w) = numZero(x) + numZero(y), w = xy
5. numOne(w) > numZero(w), substitution and addition, 1-4

Again, a proof written in English prose acceptable. The use of the induction hypothesis should
be clearly indicated.

We’ve shown for both cases thatnumOne(w) > numZero(w). Therefore, every string inT has
more ones than zeros.



Every string that has more1’s than0’s is in T :
Let w be a string that has more1’s than0’s. Let x be the shortest prefix ofw that has more1’s
than zeros – note thatw has this property so such a prefix must exist. Furthermore,x must have
exactly one more1 than0, andx must end with a1. Thus, we can chooseu such thatx = u1, and
u ∈ S. Now, choosey such thatw = xy. Note thatnumOne(y) ≥ numZero(y). We consider
two cases:

numOne(y) = numZero(y): This means thaty ∈ S. We now havew = u1y with u, y ∈ S.
Thus, the first case in the definition ofT applies, andw ∈ T .

numOne(y) > numZero(y): This means thaty ∈ T . Furthermore,x = u1ǫ, andu andǫ are
both inS. Therefore,x ∈ T by the first case in the definition ofT . Having shown thatx and
y are both inT , we conclude thatxy ∈ T using hte second case in the definition ofT . This
shows thatw ∈ T .

We’ve shown for both cases thatw ∈ T . Therefore, every string in that has more1’s than0’s is
in T .

We’ve shown that every string inT has more ones than zeros and that every string that has more ones
than zeros is inT . Thus,T is the set of all strings that have more ones than zeros.

I’ve been careful to put “wrap-up” statements at the end of each part of the proof. Acceptable solutions
can omit those when they are clear and be somewhat less detailed than mine.

2. (20 points) LetΣ = {0, 1, 2}. Let⊆ Σ∗H be the language that contains a stringw iff

• w = ǫ; or

• There are stringsx andy in H such thatw ∈ {0x1y2, 0x2y1, 1x0y2, 1x2y0, 2x0y1, 2x1y0}.

(a) (10 points) Prove that for each string,w in H , the number of0’s, 1’s and2’s in w are all equal to each
other.

Solution: Let numZero(w), numOne(w) andnumTwo(w) denote respectively the number of0’s, 1’s
and2’s in w. Let w ∈ H be a string. To show thatnumZero(w) = numOne(w) = numTwo(w),
there are two cases to consider according to the definition ofH :

w = ǫ: numZero(w) = numOne(w) = numTwo(w) = 0.

w ∈ {0x1y2, 0x2y1, 1x0y2, 1x2y0, 2x0y1, 2x1y0}: We consider the case wherew = 0x1y2, the
other cases are equivalent. We have:

1. numZero(w) = 1 + numZero(x) + numZero(y), w = 0x1y2
2. numOne(w) = 1 + numOne(x) + numOne(y), w = 0x1y2

= 1 + numZero(x) + numZero(y), induction hypothesis:
numOne(x) = numZero(x)
andnumOne(y) = numZero(y)

= numZero(w), substitution, step 1
3. numTwo(w) = 1 + numTwo(x) + numTwo(y), w = 0x1y2

= 1 + numZero(x) + numZero(y), induction hypothesis:
numTwo(x) = numZero(x)
andnumTwo(y) = numZero(y)

= numZero(w), substitution, step 1
4. numZero(w) = numOne(w) = numTwo(w), steps 2 & 3

This completes the proof.

(b) (10 points) DoesH contain all strings that have an equal number of0’s, 1’s and2’s? Give a short proof
for your answer.



Solution: H does not contain all strings that have an equal number of0’s, 1’s and2. For example,H
does not include the string012210.
Proof: The first rule forH produces the empty string. All strings produced by the second rule have
first and last symbols that differ. Neither rule can produce the string012210.

An acceptable proof would be:

There are no strings inH for which the first and last symbol are the same.

or

If w ∈ H andw 6= ǫ, then the first and last symbols ofw are different.

3. (30 points) LetΣ = {a,b}. Figure 1 depicts three finite state machines that read inputs from this alphabet. Let
La, Lb, andLc be the languages accepted by DFA (a), DFA (b), and DFA (c) respectively.

(a) (9 points) For each ofLa, Lb, andLc, list three strings inΣ∗ that are in the language and three strings in
Σ∗ that are not in the language.

Solution:
La: The stringsa, aa andaaa are inLa.

The stringsb, ab andbb are not inLa.

Lb: The stringsaa, baa andbaabaa are inLb.
The stringsb, ab andbb are not inLb.

Lc: The stringsaaa, aaaa andbaaa are inLc.
The stringsb, ab andbb are not inLc.

(b) (12 points) Write a short description of each of the languages,La, Lb andLc.

Solution:
La: w ∈ La iff w ends with ana.

Lb: w ∈ Lb iff w ends with twoa’s followed by zero or more repetitions ofba.
It is not correct to say thatLb is the set of all strings that end with twoa’s. For example, the string
aaba is in Lb, but it does not end with twoa’s.

Lc: For this one, it’s convenient to define two other languages first. LetLba be the language of all
strings consisting of zero or more repetitions ofba; for exampleǫ, ba, andbabababa are in
Lba. Let Lbba−a be the language of all strings of the formbba y a wherey ∈ Lba.
Using these definitions, a stringw is in Lc iff w ends with a suffix of the formaa y a z where
y ∈ Lba and is the concatenation of zero or more strings fromLba or Lbba−a.
Explanation: Letz be the suffix of as stringw as described above. Theaa at the beginning of
z moves the machine to state 2. The stringy moves the machine back and forth between states
1 and 2 any number of times (perhaps zero), ending in state 2. The nexta moves the machine
to state 3. Once the machine has reached state 3, any string from Lba moves the machine back
and forth between states 2 and 3 any number of times (perhaps zero). Likewise, as string from
Lbba−a brings the machine back to state 1 (with thebb) then forward to state 2 (with thea) and
eventually back to state 3 (with the finala).
Note that we don’t have to worry about strings that take the machine all the way back to state 0 –
we can just start again with a later suffix.

By the time that this is posted, we will have seen regular expressions. I wrote my description without
using regular expressions. Here’s the same descriptions written as regular expressions:

La = Σ∗ a
Lb = Σ∗ aa (ba)∗

Lc = Σ∗ aa (ba)∗ a (ba ∪ (bba (ba)∗ a))∗



(c) (9 points)
Is La = Lb, La ⊂ Lb, La ⊃ Lb, or none of these?
Is Lb = Lc, Lb ⊂ Lc, Lb ⊃ Lc, or none of these?
Is La = Lc, La ⊂ Lc, La ⊃ Lc, or none of these?
Give a short justification of your answers.

Solution: La ⊃ Lb ⊃ Lc.
Any string inLb ends with ana and is therefore inLa. Conversely, the stringa is in La but not inLb;
thus the superset relation,La ⊃ Lb is strict.
Let δb andδc be the state transition functions for DFA(a) and DFA(b) respectively. I’ll now show by
induction that for all strings,w,

δc(0, w) − 1 ≤ δb(0, w) ≤ δc(0, w).

My proof is (of course) by induction – in this case onw.

w = ǫ: δb(0, ǫ) = 0 = δc(0, ǫ).

w = x · c:

If c = a andδb(0, x) < 2, Both machines move one to the right and the induction hypothesis is
maintained.

If c = a andδb(0, x) = 2, DFA(b) stays in state 2. DFA(c) must have been in state 2 or 3 after
readingx, and moves to state 3 after reading thea. The induction hypothesis is maintained.

If c = b andδb(0, x) > 0, Both machines move one to the left and the induction hypothesis is
maintained.

If c = b andδb(0, x) = 0, DFA(b) stays in state 0. DFA(c) must have been in state 0 or 1 after
readingx, and moves to state 0 after reading thea. The induction hypothesis is maintained.

Now, considerw ∈ Lc. This means thatδc(0, w) = 3. By the result that we just proved by induction,

2 ≤ δb(0, w) ≤ 3,

but δb(0, w) must be less than 3. Therefore,δb(0, w) = 2 which means that DFA(b) acceptsw.
Thereforew ∈ Lb.
The stringaa is in Lb but not inLa. This shows that the superset relationship,Lb ⊃ Lc is strict.

I’ll also accept a solution that doesn’t set up a formal induction proof. For example:

Let w be a string inLc. As noted earlier, this means thatw ends with twoa’s followed by zero
or more repetitions ofba followed by ana followed by zero or more repetitions ofba. Note that
we can find stringsx andy such that

• w = xy;

• x ends with twoa’s followed by zero or more repetitions ofba followed by ana,

• y consists of zero or more repetitions ofba.

Any suchx must end with two consecutivea’s (just consider the cases for zero repetitions ofba
and more than zero repetitions). Therefore,xy is a string that ends with twoa’s followed by zero
or more repetitions ofba. Thus,xy ∈ Lb.

Of course, an example to show that the subset relationship isstrict is still required.
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Figure 1: Finite state machines for question 3


