The actual exam will be open book, open notes, open homework and solutions, closed mouth. No calculators, laptop computers, PDA's etc.

1. (30 points): Each of the three languages described below is regular. Show this. For one language, you should construct a DFA; for another, you should construct an NFA; and for the remaining language, you should write a regular expression. You can choose which method you use with which language.
(a) $\left\{w \in\{0,1\}^{*} \mid w\right.$ is the binary representation of a number that is divisible by four. $\}$.
(b) $\left\{w \in\{0,1\}^{*} \mid w\right.$ is the binary representation of a number that is divisible by five. $\}$.
(c) $\left\{w \in\{0,1\}^{*} \mid \exists x, y, z .(w=x y z) \wedge(\# 1(y)=(\# 0(y)+3))\right\}$, where $\# 0(y)$ is the number of 0 's in y , and $\# 1(y)$ is the number of 1 's. In English, this says that w contains a substring (i.e. y) that has three more 1's than 0's.

For parts (a) and (b), assume that the string is entered most significant bit first, i.e. 0101 represents the decimal value 5 .
2. (30 points): Let A and B be regular languages over some alphabet Σ. Let C be the language:

$$
C=\left\{w \mid \exists x, y, z \in \Sigma^{*} .(w=x z) \wedge(x y z \in A) \wedge(y \in B)\right\}
$$

Show that C is regular.
An acceptable answer will construct a DFA, NFA, or RE for C, or use closure properties that we've already shown. You should write a few sentences to explain why your construction is correct, but you don't need to write a full, formal proof.
3. (40 points): Let $\# 0(w)$ be the number of 0 's in w and $\# 1(w)$ be the number of 1 's in w. For each language below, determine whether or not it is regular. Give a brief justification for each answer.
(a) (20 points): $A_{1}=\left\{w \in\{0,1\}^{*} \mid \# 0(w)-\# 1(w)\right.$ is divisible by 3$\}$
(b) (20 points): $A_{2}=\left\{w \in\{0,1\}^{*} \mid \# 0(w)-\# 1(w)<3\right\}$
(c) (10 points, Extra Credit): $A_{3}=\left\{w \in\{0,1\}^{*}| | \# 0(w)-\# 1(w) \mid>3\right\}$

