## Today's Lecture: CFLs and Valid Computations

## Reading:

Today: CFLs and Valid Computations.
Read: Kozen lecture 35.
November 30: Gödel's Theorem
Read: Kozen lecture 38 (or Sipser 6.2).
December 2: Something Fun: Theorem proving, etc.
I. Valid Computational Histories.
A. Let's say that Turing machine $M$ terminates on input $x$. Then:

1. Let $\chi_{0}=\left(q_{0}, \vdash x \square^{\omega}, 0\right)$ be the initial configuration for the machine on input $x$.
2. Let $\chi_{m}=\left(q_{m}, \vdash y_{m} \square^{\omega}, p_{m}\right)$ be the configuration reached after $M$ has performed $m$ steps:

$$
\chi_{0} \xrightarrow[M]{\vec{M}} \quad\left(q_{m}, \vdash y_{m} \square^{\omega}, p_{m}\right)
$$

3. Because $m$ terminates on input $x$, there is some integer $n$ such that

$$
\chi_{0} \quad \underset{M}{\stackrel{n}{\longrightarrow}} \quad\left(q_{n}, \vdash y \square^{\omega}, m\right)
$$

with $q_{n} \in\{t, r\}, y \in \Gamma^{*}$, and $m \in \mathbb{Z}$, where $t$ and $r$ are the accept and reject states for $M$ and $\Gamma$ is the tape alphabet.
4. It is easy to show (by induction on $m$ ) that for all $m \leq n$, if $p_{m}$ is the position of the read/write head after $m$ moves, then $p_{m} \leq m$.
5. Thus, $M$ visits at most, the $n$ leftmost squares of its tape when processing $x$.
B. Let $\Gamma^{\prime}=(\Gamma \times(Q \cup\{\circ\})) \cup\{\#\}$.

1. We can now represent configurations as strings over $\Gamma^{\prime *}$. I'll write symbols in $\Gamma^{\prime}$ as $c_{q}$ where $c \in \Gamma$ and $q \in$ $(Q \cup \circ)$.
2. Given a configuration, $\left(q, y \square^{\omega}, m\right)$ (note that the first symbol of $y$ must be $\vdash$ ), we define a string $y^{\prime}$ such that each symbol in $y^{\prime}$ is the corresponding symbol in $\vdash y$ paired with $\circ$, except for the symbol in position $m$; we pair that one with $q$.
3. Formally, we can make sure that $|\vdash y| \geq m$ by padding it with $\square$ symbols if needed. Now, define

$$
\begin{aligned}
f(q, \epsilon, m) & =\epsilon \\
f(q, c \cdot y, m) & =\left(\text { if } m=0 \text { then } c_{q} \text { else } c_{\circ}\right) \cdot f(y, m-1, q)
\end{aligned}
$$

4. We represent the configuration $\left(q, y \square^{\omega}, m\right)$ with the string $f(q, y, m) \cdot \square_{\circ}^{\omega}$.
C. If $M$ accepts $x$ in $n$ moves, we can represent the computation that $M$ performed as a sequence of $n+1$ strings in $\Gamma^{\prime n+1}$.
5. As noted above, $M$ visits at most the first $n+1$ tape squares by the end of its $n^{t h}$ move. Thus, we only need to keep track of the first $n+1$ tape squares. The others won't affect what $M$ does in its first $n$ moves (even if $|x|>n$, this just means that $M$ accepts or rejects without reading all of $x$ ).


Figure 1: A Machine that accepts $0^{n} 1^{n}$
2. We can concatenate the strings for the $n+1$ configurations together, using the $\#$ symbol as a separator, to get a string in $\Gamma^{\prime n+1}$.
3. An example:
a. Let $M$ be a machine with input alphabet $\{0,1\}$ that accepts strings that have the same number of 0 's and 1 's. Figure 1 shows such a machine.
b. Here's a brief description of how the machine works.
i. In state $s$ it scans to the right until it encounters the first $\square$. It replaces this with an right endmarker, $\dashv$, and moves to state $A$.
ii. The machine now repeatedly makes right-to-left and left-to-right scans. On each scan, it erases one 0 symbol and one 1 symbol. If it reaches a point where all of the 0 's and 1 's have been erased, it accepts. Otherwise, if there are 0 's left over after all of the 1's are erased (or vice versa), it rejects. I explain the details in the following.
iii. If the first non-blank character that it encounters on a right-to-left scan is a 0 , the machine erases the 0 , enters state $B$, and completes moving to the left until it reaches the left endmarker. It then enters state $C$. In state $C$, the machine moves to the right looking for a 1 . If it finds one, then it erases it and enters state $F$. Otherwise, it rejects the string because there are more 0's than 1's.
iv. If the first non-blank character that it encounters on a right-to-left scan is a 1 , the machine erases the 1 and enters state $D$. It completes the scan to the left, turns around, and looks for a 1 . If it finds one, it erases it and enters state $F$. Otherwise, it rejects the string because there are more 1 's than 0 's.
v. If the first non-blank character that it encounters is the left endmarker, then it has successfully erased all of the 0 's and 1 's and accepts.
vi. When the machine enters state $F$, it completes the left-to-right scan, and returns to state $A$ for the next iteration.
c. Figure 2 shows the sequence of configurations that the machine goes through to reject the input 110. It also shows how this can be represented by a long string over the alphabet

$$
(\{0,1, \square, \vdash, \dashv\} \times\{s, t, r, A, B, C, D, E, F, \circ\}) \cup\{\#\}
$$

In particular, the machine from Figure 1 takes 21 steps to reject

| step |  | configuration | string |
| :---: | :---: | :---: | :---: |
| 0 ． |  | $\left(s, \vdash 110 \square^{\omega}, 0\right)$ | $\# \vdash_{s} 1_{\circ} 1_{\circ} 0_{\circ} \square_{o}^{17}$ |
| 1. | $\xrightarrow[M]{1}$ | $\left(s, \vdash 110 \square^{\omega}, 1\right)$ | －\＃卜o $1_{s} 1_{\circ} 0 \square_{\circ} \square_{\circ}^{17}$ |
| 2. | $\xrightarrow[M]{\stackrel{1}{\longrightarrow}}$ | $\left(s, \vdash 110 \square^{\omega}, 2\right)$ | －\＃$\vdash_{\circ} 1_{\circ} 1_{s} 0_{\circ} \square_{\circ}^{17}$ |
| 3. | $\xrightarrow[M]{\stackrel{1}{\longrightarrow}}$ | $\left(s, \vdash 110 \square^{\omega}, 3\right)$ | ．\＃ト $\vdash_{\circ} 1_{\circ} 1_{\circ} 0_{s} \square_{\circ}^{17}$ |
| 4. | $\xrightarrow[M]{\stackrel{1}{\longrightarrow}}$ | $\left(s, \vdash 110 \square^{\omega}, 4\right)$ | －\＃卜 。 $1_{\circ} 1_{\circ} 00_{\circ} \square_{s} \square_{\circ}^{16}$ |
| 5. | $\xrightarrow[M]{\stackrel{1}{\longrightarrow}}$ | $\left(A, \vdash 110 \dashv \square^{\omega}, 3\right)$ | ．\＃卜o $1 \circ 1 \circ 0_{A} \dashv_{\circ} \square_{\circ}^{16}$ |
| 6. | $\xrightarrow[M]{1}$ | $\left(B, \vdash 11 \square \dashv \square^{\omega}, 2\right)$ | ．$\# \vdash_{\circ} 1_{\circ} 1_{B} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 7. | $\xrightarrow[M]{1}$ | $\left(B, \vdash 11 \square \dashv \square^{\omega}, 1\right)$ | ．\＃$\vdash_{\circ} 1_{B} 1_{\circ} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 8. | $\xrightarrow[M]{\stackrel{1}{\longrightarrow}}$ | $\left(B, \vdash 11 \square \dashv \square^{\omega}, 0\right)$ | ．$\# \vdash_{B} 1_{\circ} 1_{\circ} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 9. | $\xrightarrow[M]{\stackrel{1}{M}}$ | $\left(C, \vdash 11 \square \dashv \square^{\omega}, 1\right)$ | ．$\# \vdash$ ○ $1_{C} 1_{\circ} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 10. | $\xrightarrow[M]{1}$ | $\left(F, \vdash \square 1 \square \dashv \square^{\omega}, 2\right)$ | ．$\# \vdash \vdash_{\circ} \square_{\circ} 1_{F} \square \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 11. | $\xrightarrow[M]{\text { P }}$ | $\left(F, \vdash \square 1 \square \dashv \square^{\omega}, 3\right)$ | ．$\# \vdash_{\circ} \square_{\circ} 1_{\circ} \square_{F} \dashv_{\circ} \square_{\circ}^{16}$ |
| 12. | $\xrightarrow[M]{1}$ | $\left(F, \vdash \square 1 \square \dashv \square^{\omega}, 4\right)$ | ．$\# \vdash \vdash_{\circ} \square_{\circ} 1_{\circ} \square_{\circ} \dashv_{F} \square_{\circ}^{16}$ |
| 13. | $\xrightarrow[M]{1}$ | $\left(A, \vdash \square 1 \square \dashv \square^{\omega}, 3\right)$ | ．$\# \vdash \vdash_{\circ} \square_{\circ} 1_{\circ} \square_{A} \dashv_{\circ} \square_{\circ}^{16}$ |
| 14. | $\xrightarrow[M]{\text { ¢ }}$ | $\left(A, \vdash \square 1 \square \dashv \square^{\omega}, 2\right)$ | ．$\# \vdash \vdash_{\circ} \square_{\circ} 1_{A} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 15. | $\xrightarrow[M]{1}$ | $\left(D, \vdash \square \square \square \dashv \square^{\omega}, 1\right)$ | ．\＃卜。 $\square_{D} \square \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 16. | $\xrightarrow[M]{1}$ | $\left(D, \vdash \square \square \square \dashv \square^{\omega}, 0\right)$ | ．\＃卜 ${ }_{D} \square_{\circ} \square \square_{\circ} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 17. | $\xrightarrow[M]{1}$ | $\left(E, \vdash \square \square \square \dashv \square^{\omega}, 1\right)$ | ．\＃卜。 $\square_{E} \square_{0} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 18. | $\xrightarrow[M]{1}$ | $\left(E, \vdash \square \square \square \dashv \square^{\omega}, 2\right)$ | ．\＃卜。 $\square_{\circ} \square_{E} \square_{\circ} \dashv_{\circ} \square_{\circ}^{16}$ |
| 19. | $\xrightarrow[M]{1}$ | $\left(E, \vdash \square \square \square \dashv \square^{\omega}, 3\right)$ | ．\＃卜。 $\square$ 。 $\square_{\circ} \square_{E} \dashv_{\circ} \square_{\circ}^{16}$ |
| 20. | $\xrightarrow[M]{1}$ | $\left(E, \vdash \square \square \square \dashv \square^{\omega}, 4\right)$ | ．\＃卜。 $\square$ 。 $\square$ 。 $\square_{\circ} \dashv_{E} \square_{\circ}^{16}$ |
| 21. | $\xrightarrow[M]{1}$ | $\left(r, \vdash \square \square \square \dashv \square^{\omega}, 5\right)$ | ．\＃卜。 $\square_{\circ} \square_{\circ} \square_{\circ} \dashv_{\circ} \square_{r} \square_{\circ}^{15} \#$ |

Figure 2：Configurations for the machine from Figure 1 when rejecting input 110
II. Undecidable problems for CFLs.
A. Let $M$ be a Turing machine, and let $x$ be a string. Does $M$ halt on $x$ ?

1. We can use the computational histories defined above to examine this question.
a. If $M$ halts with input $x$, then there is a some integer $n$, such that there is a string of length $(n+1)(n+2)+1$ symbols that describes the computation.
b. The $n+1$ is for the configurations $\chi_{0}$ through $\chi_{n}$.
c. The machine visits at most $n+1$ squares of the tape, and configurations are separated by the $\#$ symbol, thus we can write each configuration with exactly $n+2$ symbols.
d. The final +1 is because Kozen surrounded each configuration with \# symbols, and I'll follow his example.
2. Let $\alpha$ be a string in $\Gamma^{\prime *}$. What properties must $\alpha$ have if it describes a valid, halting computation?
a. It must be of the form $\# \alpha_{0} \# \alpha_{1} \# \ldots \# \alpha_{n} \#$.
b. Each $\alpha_{i}$ must be of the form: $\beta_{\circ}{ }^{*} \beta_{q} \beta_{\circ}{ }^{*}$, where $\beta_{\circ}$ matches any symbol in $\Gamma \times\{\circ\}$, and $\beta_{q}$ matches be any symbol in $\Gamma \times Q$.
c. $\quad \alpha_{0}$ represents the initial configuration with input $x$. In other words, $\alpha_{0}=\vdash_{s} x_{\circ} \square^{*}$, where $x_{\circ}$ is the string in $\Gamma^{\prime *}$ corresponding to $x$ with every symbol in $x$ paired with $\circ$.
d. $\quad \alpha_{n}$ represents a configuration in a final state of $M: \beta_{\circ}{ }^{*} \beta_{t r} \beta_{\circ}{ }^{*}$, where $\beta_{t r}$ matches any symbol in $\Gamma \times\{t, r\}$.
e. The string $\alpha_{i+1}$ is the valid successor of $\alpha_{i}$ according to the relation $\xrightarrow[M]{\stackrel{1}{M}}$.

We note that the first four properties correspond to a regular language corresponding to the regular expression:

$$
\# \vdash_{s} x_{\circ} \square^{*}\left(\# \beta_{\circ}^{*} \beta_{q} \beta_{\circ}{ }^{*}\right) \# \beta_{\circ}^{*} \beta_{t r} \beta_{\circ}{ }^{*} \#
$$

We'll show that the fifth property is the complement of a context-free language.
B. Revisiting an old friend, who's context-free

1. Recall $A=\{x \mid \exists w . x=w w\}$ is not context-free, but $\sim A$ is a CFL. We can recognize $\sim A$ with the following PDA:
a. If $y \in A$, then either $|y|$ is odd, or we can find symbols $c$ and $d$, and strings $u, v, w$, and $x$, such that $y=u c v w d x, d \neq c,|u|=|w|$, and $|v|=|x|$. In other words, if $y$ isn't the repetition of some string, then the first and second half of $y$ must be different. This means that they differ in at least one position. The symbols $c$ and $d$ are these symbols that differ. The strings $u, v, w$, and $x$ just keep track of how far we are into each string to make sure that $c$ and $d$ came from corresponding positions.
b. A PDA can recognize language $\sim A$ by
i. Pushing a marker on for each symbol in $u$.
ii. Remembering the symbol $c$ in its finite state.
iii. Popping markers off until the top-of-stack marker, $\perp$ is revealed, and then pushing on markers until it reaches symbol $d$. Note that $|v|+|w|=|u|+|x|$. Thus, there are $|w|$ markers on the stack at this point.
iv. Verify that $d \neq c$.
v. Pop markers off the stack until the top-of-stack marker is uncovered again.
vi. If it has consumed the entire input string, it has shown that the $y$ is not of the form $w w$.
vii. Note that the machine uses non-determinism to "guess" where $c$ and $d$ are, but the counting that it does by pushing and popping markers proves that it didn't cheat.
2. Let $B=\left\{x \mid \exists w \in(\Sigma-\{\#\})^{*} . x=\# w \# w \#\right\}$. We can show that $B$ is not context free, but that $\sim B$ is context-free by pretty much the same construction as before.
a. A string, $y$, is in $\sim B$ iff at least one of the following four conditions applies
i. $\quad y$ does not contain three $\#$ symbols. This is a regular language, therefore it is context-free.
ii. $\quad y$ has other symbols before the first $\#$ or after the last \#. Again, this is regular and therefore context-free.
iii. The two strings between the $\#$ symbols are of different lengths. This is context-free (a PDA can count the symbols using markers on its stack and accept if the counts don't match).
iv. The two strings between the \# symbols differ. We can make a PDA that ignores the \# symbols, and this becomes the problem of showing that $y$ is not of the form $w w$. We just showed that this is context-free.

Thus, $\sim B$ is the union of four context-free languages. Context free-languages are closed under union. Therefore, $\sim B$ is context free.
3. Let $C=\left\{x \mid \exists w \in(\Sigma-\{\#\})^{*} . x=\#(w \#)^{*}\right\}$ Again, $C$ is not a CFL, but $\sim C$ is. Given an input string $\# x_{0} \# x_{1} \# \ldots \# x_{n} \#$, a PDA can non-deterministically guess a consecutive pair of $x$ 's that don't match, and verify that guess using the procedure described above.
4. Note that, rather than checking that $d \neq c$, we can check that $d \neq f(c)$ for any function that we like. We can also check to see if there is some sequence of three symbols, $c_{1} c_{2} c_{3}$ such that the symbols in the corresponding position in the second string, $d_{1} d_{2} d_{3}$ don't match $f\left(c_{1} c_{2} c_{3}\right)$. We'll define $f$ to track match what a Turing machine does. Let $\alpha_{i}=\beta_{i} c_{1, \circ} c_{2, q} c_{3, \circ} \gamma_{i}$.
a. If $\left(q, c_{2}\right) \rightarrow\left(q^{\prime}, e, L\right)$, then let $d_{1}=c_{1, q^{\prime}}, d_{2}=e_{\circ}$, and $d_{3}=c_{3, \circ}$.
b. Otherwise $\left(q, c_{2}\right) \rightarrow\left(q^{\prime}, e, R\right)$, and we let $d_{1}=c_{1, \mathrm{o}}, d_{2}=e_{\mathrm{\circ}}$, and $d_{3}=c_{3, q^{\prime}}$.

To show that two consecutive configurations are not valid successors in a computation of $m$, we find $\alpha_{i}$ and $\alpha_{i+1}$ such that $\alpha_{i}=\beta_{i} c_{1, \circ} c_{2, q} c_{3, \circ} \gamma_{i}$. and $\alpha_{i+1} \neq \beta_{i} d_{1} d_{2} d_{3} \gamma_{i}$. As described above, we can check this with a PDA. Aside from the usual stuff of checking the lengths of $\alpha_{i}$ and $\alpha_{i+1}$, and making sure that $\alpha_{i}$ only has one symbol marked with a state (rather than with o), the machine looks for
c. Symbols in corresponding positions of $\alpha_{i}$ and $\alpha_{i+1}$ that don't match, and that are not within distance one of the symbol marked with the machine state in $\alpha_{i}$.
d. It looks for symbols marked with the machine state in $\alpha_{i}$ and its immediate left and right neighbours and determines that the symbols in the corresponding position in $\alpha_{i+1}$ don't correspond to the appropriate move of $M$.
C. An undecidable problem for CFLs

1. We've shown that the first four conditions for a valid computation history form a regular language. Therefore, their complement is a regular language and is context-free.
2. We've shown that the complement of the final condition is context-free. Basically, a PDA can guess which pair of configurations is "wrong." If some symbol away from the tape head has been altered, then it detects that the same way a PDA can show that a string is not of the form $w w$. On the other hand, if the string doesn't correspond to the right move, the PDA can remember the symbol under the head of $\alpha_{i}$, its left and right neighbours, and the TM state in the PDA's state. It then checks the corresponding three symbols for $\alpha_{i+1}$ and shows that they don't match up.
3. Let $G$ be the CFG that corresponds to invalid computations.
a. If $L(G)=\Gamma^{\prime *}$, then there is no valid computation that leads to a final state. We conclude that $M$ does not terminate on input $x$.
b. On the other hand, if $L(G) \neq \Gamma^{\prime *}$, then let $z \in \sim L(G)$. The string $z$ describes a terminating computation on $x$. Thus, $M$ halts on input $x$.
c. The question of whether or not $M$ halts on input $x$ can be reduced to the question of whether or not the language of a context-free grammar is $\Gamma^{\prime *}$.
d. Thus, the question of whether or not a context-free grammar generates all strings is undecidable.
