
CpSc 421 Introduction to Theory of Computing November 28, 2005

Today’s Lecture: CFLs and Valid Computations

Reading:

Today: CFLs and Valid Computations.
Read:Kozenlecture 35.

November 30:Gödel’s Theorem
Read:Kozenlecture 38 (orSipser6.2).

December 2:Something Fun: Theorem proving, etc.

I. Valid Computational Histories.

A. Let’s say that Turing machineM terminates on inputx. Then:
1. Let χ0 = (q0,` x�ω, 0) be the initial configuration for the machine on inputx.

2. Let χm = (qm,` ym�ω, pm) be the configuration reached afterM has performedm steps:

χ0
m−→
M

(qm,` ym�ω, pm)

3. Becausem terminates on inputx, there is some integern such that

χ0
n−→
M

(qn,` y�ω,m)

with qn ∈ {t, r}, y ∈ Γ∗, andm ∈ Z, wheret andr are the accept and reject states forM andΓ is the tape alphabet.

4. It is easy to show (by induction onm) that for allm ≤ n, if pm is the position of the read/write head afterm
moves, thenpm ≤ m.

5. Thus,M visits at most, then leftmost squares of its tape when processingx.

B. Let Γ′ = (Γ× (Q ∪ {◦})) ∪ {#}.
1. We can now represent configurations as strings overΓ′∗. I’ll write symbols in Γ′ ascq wherec ∈ Γ andq ∈

(Q ∪ ◦).
2. Given a configuration,(q, y�ω,m) (note that the first symbol ofy must bè ), we define a stringy′ such that each

symbol iny′ is the corresponding symbol iǹ y paired with◦, except for the symbol in positionm; we pair that
one withq.

3. Formally, we can make sure that| ` y| ≥ m by padding it with� symbols if needed. Now, define

f(q, ε,m) = ε
f(q, c · y, m) = (if m = 0 thencq elsec◦) · f(y, m− 1, q)

4. We represent the configuration(q, y�ω,m) with the stringf(q, y,m) ·�ω
◦ .

C. If M acceptsx in n moves, we can represent the computation thatM performed as a sequence ofn + 1 strings in
Γ′n+1.
1. As noted above,M visits at most the firstn + 1 tape squares by the end of itsnth move. Thus, we only need to

keep track of the firstn + 1 tape squares. The others won’t affect whatM does in its firstn moves (even if|x| > n,
this just means thatM accepts or rejects without reading all ofx).

1



(1 1, R)
(0 0, R)

( , L)

( , R)

( , R) t

(0 0, L)
(1 1, L)

( , R)

rA

B C

D E

( , L)

( , L)
(1 1, L)
(0 0, L)

( , R)

( , R)
(0 0, R)

(1 1, R)

(0 , R)

(1 , R)

F

( , R)
(0 0, R)
(1 1, R)

( , L)

( , L)
(0 , L)

(1 , L)

( , R)

( , R)

( , R)

s

Figure 1: A Machine that accepts0n1n

2. We can concatenate the strings for then + 1 configurations together, using the# symbol as a separator, to get a
string inΓ′n+1.

3. An example:
a. Let M be a machine with input alphabet{0, 1} that accepts strings that have the same number of0’s and1’s.

Figure 1 shows such a machine.
b. Here’s a brief description of how the machine works.

i. In states it scans to the right until it encounters the first�. It replaces this with an right endmarker,a,
and moves to stateA.

ii. The machine now repeatedly makes right-to-left and left-to-right scans. On each scan, it erases one0
symbol and one1 symbol. If it reaches a point where all of the0’s and1’s have been erased, it accepts.
Otherwise, if there are0’s left over after all of the1’s are erased (or vice versa), it rejects. I explain the
details in the following.

iii. If the first non-blank character that it encounters on a right-to-left scan is a0, the machine erases the0,
enters stateB, and completes moving to the left until it reaches the left endmarker. It then enters stateC. In
stateC, the machine moves to the right looking for a1. If it finds one, then it erases it and enters stateF .
Otherwise, it rejects the string because there are more0’s than1’s.

iv. If the first non-blank character that it encounters on a right-to-left scan is a1, the machine erases the1 and
enters stateD. It completes the scan to the left, turns around, and looks for a1. If it finds one, it erases it
and enters stateF . Otherwise, it rejects the string because there are more1’s than0’s.

v. If the first non-blank character that it encounters is the left endmarker, then it has successfully erased all
of the0’s and1’s and accepts.

vi. When the machine enters stateF , it completes the left-to-right scan, and returns to stateA for the next
iteration.

c. Figure 2 shows the sequence of configurations that the machine goes through to reject the input110. It also
shows how this can be represented by a long string over the alphabet

({0, 1,�,`,a} × {s, t, r, A, B,C,D,E, F, ◦}) ∪ {#}

In particular, the machine from Figure 1 takes 21 steps to reject

2



step configuration string
0. (s, ` 110�ω, 0) # `s 1◦1◦0◦�17

◦

1.
1−→
M

(s, ` 110�ω, 1) · # `◦ 1s1◦0◦�17
◦

2.
1−→
M

(s, ` 110�ω, 2) · # `◦ 1◦1s0◦�17
◦

3.
1−→
M

(s, ` 110�ω, 3) · # `◦ 1◦1◦0s�17
◦

4.
1−→
M

(s, ` 110�ω, 4) · # `◦ 1◦1◦0◦�s�16
◦

5.
1−→
M

(A, ` 110 a �ω, 3) · # `◦ 1◦1◦0A a◦ �16
◦

6.
1−→
M

(B, ` 11� a �ω, 2) · # `◦ 1◦1B�◦ a◦ �16
◦

7.
1−→
M

(B, ` 11� a �ω, 1) · # `◦ 1B1◦�◦ a◦ �16
◦

8.
1−→
M

(B, ` 11� a �ω, 0) · # `B 1◦1◦�◦ a◦ �16
◦

9.
1−→
M

(C, ` 11� a �ω, 1) · # `◦ 1C1◦�◦ a◦ �16
◦

10.
1−→
M

(F, ` �1� a �ω, 2) · # `◦ �◦1F �◦ a◦ �16
◦

11.
1−→
M

(F, ` �1� a �ω, 3) · # `◦ �◦1◦�F a◦ �16
◦

12.
1−→
M

(F, ` �1� a �ω, 4) · # `◦ �◦1◦�◦ aF �16
◦

13.
1−→
M

(A, ` �1� a �ω, 3) · # `◦ �◦1◦�A a◦ �16
◦

14.
1−→
M

(A, ` �1� a �ω, 2) · # `◦ �◦1A�◦ a◦ �16
◦

15.
1−→
M

(D, ` ��� a �ω, 1) · # `◦ �D�◦�◦ a◦ �16
◦

16.
1−→
M

(D, ` ��� a �ω, 0) · # `D �◦�◦�◦ a◦ �16
◦

17.
1−→
M

(E, ` ��� a �ω, 1) · # `◦ �E�◦�◦ a◦ �16
◦

18.
1−→
M

(E, ` ��� a �ω, 2) · # `◦ �◦�E�◦ a◦ �16
◦

19.
1−→
M

(E, ` ��� a �ω, 3) · # `◦ �◦�◦�E a◦ �16
◦

20.
1−→
M

(E, ` ��� a �ω, 4) · # `◦ �◦�◦�◦ aE �16
◦

21.
1−→
M

(r, ` ��� a �ω, 5) · # `◦ �◦�◦�◦ a◦ �r�15
◦ #

Figure 2: Configurations for the machine from Figure 1 when rejecting input110
.

3



II. Undecidable problems for CFLs.

A. Let M be a Turing machine, and letx be a string. DoesM halt onx?

1. We can use the computational histories defined above to examine this question.
a. If M halts with inputx, then there is a some integern, such that there is a string of length(n + 1)(n + 2) + 1

symbols that describes the computation.
b. Then + 1 is for the configurationsχ0 throughχn.
c. The machine visits at mostn + 1 squares of the tape, and configurations are separated by the# symbol, thus

we can write each configuration with exactlyn + 2 symbols.
d. The final+1 is because Kozen surrounded each configuration with# symbols, and I’ll follow his example.

2. Let α be a string inΓ′∗. What properties mustα have if it describes a valid, halting computation?
a. It must be of the form#α0#α1# . . .#αn#.
b. Eachαi must be of the form:β◦

∗βqβ◦
∗, whereβ◦ matches any symbol inΓ × {◦}, andβq matches be any

symbol inΓ×Q.
c. α0 represents the initial configuration with inputx. In other words,α0 =`s x◦�∗, wherex◦ is the string in

Γ′∗ corresponding tox with every symbol inx paired with◦.
d. αn represents a configuration in a final state ofM : β◦

∗βtrβ◦
∗, whereβtr matches any symbol inΓ× {t, r}.

e. The stringαi+1 is the valid successor ofαi according to the relation 1−→
M

.
We note that the first four properties correspond to a regular language corresponding to the regular expression:

# `s x◦�
∗(#β∗

◦βqβ◦
∗)#β∗

◦βtrβ◦
∗#

We’ll show that the fifth property is the complement of a context-free language.

B. Revisiting an old friend, who’s context-free

1. RecallA = {x| ∃w. x = ww} is not context-free, but∼A is a CFL. We can recognize∼A with the following
PDA:
a. If y ∈ A, then either|y| is odd, or we can find symbolsc and d, and stringsu, v, w, andx, such that

y = ucvwdx, d 6= c, |u| = |w|, and|v| = |x|. In other words, ify isn’t the repetition of some string, then the
first and second half ofy must be different. This means that they differ in at least one position. The symbolsc
andd are these symbols that differ. The stringsu, v, w, andx just keep track of how far we are into each string
to make sure thatc andd came from corresponding positions.

b. A PDA can recognize language∼A by
i. Pushing a marker on for each symbol inu.

ii. Remembering the symbolc in its finite state.
iii. Popping markers off until the top-of-stack marker,⊥ is revealed, and then pushing on markers until it

reaches symbold. Note that|v|+ |w| = |u|+ |x|. Thus, there are|w| markers on the stack at this point.
iv. Verify thatd 6= c.
v. Pop markers off the stack until the top-of-stack marker is uncovered again.

vi. If it has consumed the entire input string, it has shown that they is not of the formww.
vii. Note that the machine uses non-determinism to “guess” wherec andd are, but the counting that it does by

pushing and popping markers proves that it didn’t cheat.

2. Let B = {x| ∃w ∈ (Σ − {#})∗. x = #w#w#}. We can show thatB is not context free, but that∼B is
context-free by pretty much the same construction as before.
a. A string,y, is in∼B iff at least one of the following four conditions applies

i. y does not contain three# symbols. This is a regular language, therefore it is context-free.
ii. y has other symbols before the first# or after the last#. Again, this is regular and therefore context-free.

iii. The two strings between the# symbols are of different lengths. This is context-free (a PDA can count the
symbols using markers on its stack and accept if the counts don’t match).

iv. The two strings between the# symbols differ. We can make a PDA that ignores the# symbols, and this
becomes the problem of showing thaty is not of the formww. We just showed that this is context-free.

4



Thus,∼B is the union of four context-free languages. Context free-languages are closed under union. Therefore,
∼B is context free.

3. Let C = {x| ∃w ∈ (Σ − {#})∗. x = #(w#)∗} Again, C is not a CFL, but∼C is. Given an input string
#x0#x1# . . .#xn#, a PDA can non-deterministically guess a consecutive pair ofx’s that don’t match, and verify
that guess using the procedure described above.

4. Note that, rather than checking thatd 6= c, we can check thatd 6= f(c) for any function that we like. We can also
check to see if there is some sequence of three symbols,c1c2c3 such that the symbols in the corresponding position
in the second string,d1d2d3 don’t matchf(c1c2c3). We’ll definef to track match what a Turing machine does. Let
αi = βic1,◦c2,qc3,◦γi.
a. If (q, c2) → (q′, e, L), then letd1 = c1,q′ , d2 = e◦, andd3 = c3,◦.
b. Otherwise(q, c2) → (q′, e, R), and we letd1 = c1,◦, d2 = e◦, andd3 = c3,q′ .
To show that two consecutive configurations arenot valid successors in a computation ofm, we findαi andαi+1

such thatαi = βic1,◦c2,qc3,◦γi. andαi+1 6= βid1d2d3γi. As described above, we can check this with a PDA. Aside
from the usual stuff of checking the lengths ofαi andαi+1, and making sure thatαi only has one symbol marked
with a state (rather than with◦), the machine looks for
c. Symbols in corresponding positions ofαi andαi+1 that don’t match, and that are not within distance one of

the symbol marked with the machine state inαi.
d. It looks for symbols marked with the machine state inαi and its immediate left and right neighbours and

determines that the symbols in the corresponding position inαi+1 don’t correspond to the appropriate move of
M .

C. An undecidable problem for CFLs

1. We’ve shown that the first four conditions for a valid computation history form a regular language. Therefore,
their complement is a regular language and is context-free.

2. We’ve shown that the complement of the final condition is context-free. Basically, a PDA can guess which pair
of configurations is “wrong.” If some symbol away from the tape head has been altered, then it detects that the same
way a PDA can show that a string is not of the formww. On the other hand, if the string doesn’t correspond to the
right move, the PDA can remember the symbol under the head ofαi, its left and right neighbours, and the TM state
in the PDA’s state. It then checks the corresponding three symbols forαi+1 and shows that they don’t match up.

3. Let G be the CFG that corresponds to invalid computations.
a. If L(G) = Γ′∗, then there is no valid computation that leads to a final state. We conclude thatM does not

terminate on inputx.
b. On the other hand, ifL(G) 6= Γ′∗, then letz ∈∼L(G). The stringz describes a terminating computation on

x. Thus,M halts on inputx.
c. The question of whether or notM halts on inputx can be reduced to the question of whether or not the

language of a context-free grammar isΓ′∗.
d. Thus, the question of whether or not a context-free grammar generates all strings is undecidable.

5


