CpSc 421 Introduction to Theory of Computing

Today’s Lecture: CFLs and Valid Computations
Reading:

Today: CFLs and Valid Computations.
Read:Kozenlecture 35.

November 30: Godel’s Theorem
Read:Kozenlecture 38 (0ISipser6.2).

December 2:Something Fun: Theorem proving, etc.

November 28, 2005

l. Valid Computational Histories.
A. Let’s say that Turing machin&/ terminates on input. Then:

1. Let xo = (g0, 0%, 0) be the initial configuration for the machine on input
2. Let xn = (gm, ymO%, pm) be the configuration reached aftefr has performedn steps:
Xo a2 (GmsF Ym0¥ Pm)
3. Becausen terminates on input, there is some integer such that
X0 % (qna F waa m)
with ¢,, € {t,r},y € I'*, andm € Z, wheret andr are the accept and reject statesférandI is the tape alphabet.
4, It is easy to show (by induction om) that for allm < n, if p,, is the position of the read/write head after

moves, them,,, < m.

5. Thus, M visits at most, the: leftmost squares of its tape when processing

B. Letl” = (I x (QU {o})) U {#1.

1. We can now represent configurations as strings oVer I'll write symbols inI” asc, wherec € T andq €

(QUo).

2. Given a configuration(q, y0*, m) (note that the first symbol of must be-), we define a string’ such that each
symbol iny’ is the corresponding symbol in y paired witho, except for the symbol in positiom; we pair that

one withg.
3. Formally, we can make sure that y| > m by padding it withC] symbols if needed. Now, define
fla,em) = e
flg,c-y,m) = (if m =0thenc,elsec,)- f(y,m—1,q)

4. We represent the configuratidg, yo“, m) with the stringf(q, y, m) - O%.

C. If M acceptse in n moves, we can represent the computation ffaperformed as a sequenceroft- 1 strings in

1—\/71,+1

1. As noted above) visits at most the first + 1 tape squares by the end of it move. Thus, we only need to
keep track of the first + 1 tape squares. The others won't affect whatdoes in its first: moves (even ifz| > n,

this just means that/ accepts or rejects without reading allxgf

0~ (0,R)
1-—(LR)
F—=(+,R) 0o-—-(@,L)

é S G‘/\

+4—(H, L)

o—(a,L) .
1 (1,1} @R
0—(0L)

-

Figure 1: A Machine that accep@®§1™

2. We can concatenate the strings for the- 1 configurations together, using thesymbol as a separator, to get a
string inT/" .
3. An example:

a.

Let M be a machine with input alphabfa, 1} that accepts strings that have the same numb@safnd1’s.

Figure 1 shows such a machine.

b.

Vi.

C.

Here’s a brief description of how the machine works.

In states it scans to the right until it encounters the fist It replaces this with an right endmarket,
and moves to statd.

The machine now repeatedly makes right-to-left and left-to-right scans. On each scan, it era@es one
symbol and ond symbol. If it reaches a point where all of tlé&s and1's have been erased, it accepts.
Otherwise, if there ar@’s left over after all of thel's are erased (or vice versa), it rejects. | explain the
details in the following.

If the first non-blank character that it encounters on a right-to-left scari)jste®e machine erases the
enters staté, and completes moving to the left until it reaches the left endmarker. It then enter€'state
stateC', the machine moves to the right looking fod alf it finds one, then it erases it and enters state
Otherwise, it rejects the string because there are iisithan1’s.

If the first non-blank character that it encounters on a right-to-left scah,ith@ machine erases thend
enters statéd. It completes the scan to the left, turns around, and looks forl&it finds one, it erases it
and enters staté'. Otherwise, it rejects the string because there are misthan0’s.

If the first non-blank character that it encounters is the left endmarker, then it has successfully erased all
of the(0’s and1’s and accepts.

When the machine enters stdfe it completes the left-to-right scan, and returns to stater the next
iteration.

Figure 2 shows the sequence of configurations that the machine goes through to reject th&dinfiglso

shows how this can be represented by a long string over the alphabet

({0,1,0,,4} x {s,t,r, A, B,C,D,E, F,o}) U {#}

In particular, the machine from Figure 1 takes 21 steps to reject

step configuration string

0. (s, F 11007, 0) #F, 1,1,0,07

L —> (s, F1100¢, 1) # o 1,1,0,07

2. —> (s, F1100%, 2) # o 1,1,0,0L7

3. —> (s, F 1100, 3) #Fo 1,1,0,0%7

4. — (s, F 1100, 4) # Fo 161,0,0,0%0

5. == (A, F11040¢, 3) #Fo 151,04 o 26

6. —= (B, F10-40° 2) # Fo 10150, -, OLE

7. —» (B, F11O0H0% 1) #to 151,00, -, L6

8. —— (B, k1040 0) #tp 11,0, -, 06

9. —= (C,F10+H0¢, 1) # o 1o1o0s o 06
10. —— (F, FO1040% 2) # o Oo1p0, -, 116
1. — (F FO1040% 3) # o Oo1,0p -, 016
12, —> (F, FO1040%, 4) #Fo Oo1,0, dp 016
13. - (A, FDI040%, 3) #Fo Oolo04 H, OL6
4. - (A FOI040%, 2) # Fo o140, 4, O6
15. —— (D, FO0040%, 1) # +, OpO,0, H, 16
16. —» (D, -O0040%, 0) # Fp O0,0,0, -, O16
17. — (B, FO00+0%, 1) # o Op0.0, -, 016
18. — (B, FO00H0¢, 2) # Fo, 0,00, -, 016
19. —» (B, FO00+0, 3) # o 0,0,0p -, 016
20. — (B, -0O00-0%, 4) # o O,0,0, -p 016
21. —-> (r, FOO00A0%, 5) # Fo 0.0,0, o 0,054

Figure 2: Configurations for the machine from Figure 1 when rejecting infiut

Il. Undecidable problems for CFLs.

A. Let M be a Turing machine, and letbe a string. Doed/ halt onz?
1. We can use the computational histories defined above to examine this question.

a. If M halts with inputz, then there is a some integersuch that there is a string of length+ 1)(n +2) + 1
symbols that describes the computation.

b. Then + 1 is for the configurationg, throughy,.

C. The machine visits at most+ 1 squares of the tape, and configurations are separated By sgmbol, thus
we can write each configuration with exactiy 2 symbols.

d. The final+1 is because Kozen surrounded each configuration #itymbols, and I'll follow his example.

2. Let o be a string il’*. What properties must have if it describes a valid, halting computation?

a. It must be of the formag#ar1# . . . #oan#.

b. Eacha; must be of the form3,*3,5,, where3, matches any symbol ifi x {0}, and, matches be any
symbol in" x Q.

C. ap represents the initial configuration with input In other wordspy =, z,[0*, wherex, is the string in
I'* corresponding ta with every symbol inz paired witho.

d. oy, represents a configuration in a final state\df 3, 8;-3,*, wheres;,. matches any symbol ifi x {¢,r}.

e. The stringo; 1 is the valid successor af; according to the relatlon—>
We note that the first four properties correspond to a regular language correspondmg to the regular expression:

ks xol:l*(#ﬂ:ﬂqﬂo*)#ﬁzﬁtrﬁo*#

We'll show that the fifth property is the complement of a context-free language.

B. Revisiting an old friend, who'’s context-free
1 RecallA = {z| 3w. x = ww} is not context-free, but-A is a CFL. We can recognize A with the following
PDA:
a. If y € A, then either|y| is odd, or we can find symbolsandd, and stringsu, v, w, andz, such that

y = ucvwdz, d # ¢, |u] = |w|, and|v| = |z|. In other words, ify isn’t the repetition of some string, then the
first and second half af must be different. This means that they differ in at least one position. The symbols
andd are these symbols that differ. The string, w, andx just keep track of how far we are into each string
to make sure thatandd came from corresponding positions.
b. A PDA can recognize languageA by

i. Pushing a marker on for each symbokin

ii. Remembering the symbelin its finite state.

iii. Popping markers off until the top-of-stack marker,is revealed, and then pushing on markers until it

reaches symbal. Note thatjv| + |w| = |u| 4 |z|. Thus, there arw| markers on the stack at this point.
iv. Verify thatd # c.

V. Pop markers off the stack until the top-of-stack marker is uncovered again.
vi. If it has consumed the entire input string, it has shown thag/tisenot of the formww.
Vii. Note that the machine uses non-determinism to “guess” whaneld are, but the counting that it does by

pushing and popping markers proves that it didn't cheat.

2. Let B = {z| Jw € (X — {#})*. * = #wHw#}. We can show thaB is not context free, but that B is
context-free by pretty much the same construction as before.
a. A string, y, is in ~B iff at least one of the following four conditions applies
i. y does not contain threg symbols. This is a regular language, therefore it is context-free.
il y has other symbols before the figstor after the lastt. Again, this is regular and therefore context-free.
iii. The two strings between th symbols are of different lengths. This is context-free (a PDA can count the
symbols using markers on its stack and accept if the counts don’t match).
iv. The two strings between thé symbols differ. We can make a PDA that ignores theymbols, and this
becomes the problem of showing theis not of the formww. We just showed that this is context-free.

3.

1.

2.

3.

Thus,~B is the union of four context-free languages. Context free-languages are closed under union. Therefore,

~B is context free.
Let C = {z| Jw € (X — {#})*. x = #(w#)*} Again, C is not a CFL, but~C' is. Given an input string

H#xo#x17 . . . #x,7#, a PDA can non-deterministically guess a consecutive paiisghat don’t match, and verify
that guess using the procedure described above.

Note that, rather than checking that~ ¢, we can check that # f(c¢) for any function that we like. We can also
check to see if there is some sequence of three symhels;; such that the symbols in the corresponding position
in the second string}; d>d; don’t matchf (c;cocs). We'll define f to track match what a Turing machine does. Let
o = 3i€1,0€2,4C3.0%;-

a. If (q, Cg) — (q/7 e,L), then letd; = Cl,q'» ds = eo, andds = C3.0-

b. Otherwise(q, c2) — (¢, e, R), and we letd; = ¢; o, da = e,, andds = c3 .

To show that two consecutive configurations ao¢ valid successors in a computationsef we finda; anda; 1
such thaty; = B;c1 0C2,4C3,07%i- @anda; 11 # Bid1dadsy;. As described above, we can check this with a PDA. Aside

from the usual stuff of checking the lengths@fandc«;, 1, and making sure that; only has one symbol marked

with a state (rather than wit), the machine looks for
Symbols in corresponding positions @f and«; 41 that don’t match, and that are not within distance one of

the symbol marked with the machine statein
It looks for symbols marked with the machine stateninand its immediate left and right neighbours and
determines that the symbols in the corresponding positien_in don’t correspond to the appropriate move of

M.

An undecidable problem for CFLs
We've shown that the first four conditions for a valid computation history form a regular language. Therefore,

their complement is a regular language and is context-free.

We've shown that the complement of the final condition is context-free. Basically, a PDA can guess which pair
of configurations is “wrong.” If some symbol away from the tape head has been altered, then it detects that the same
way a PDA can show that a string is not of the formw. On the other hand, if the string doesn’t correspond to the
right move, the PDA can remember the symbol under the heag, @k left and right neighbours, and the TM state
in the PDA's state. It then checks the corresponding three symbatg ferand shows that they don’t match up.

Let G be the CFG that corresponds to invalid computations.
If L(G) = I''", then there is no valid computation that leads to a final state. We conclud#/tdaes not

C.

d.

a.
terminate on input.

b. On the other hand, iL.(G) # I’", then letz e~L(G). The stringz describes a terminating computation on
x. Thus,M halts on input.

c. The question of whether or ndt/ halts on inputr can be reduced to the question of whether or not the
language of a context-free grammaiis.

d. Thus, the question of whether or not a context-free grammar generates all strings is undecidable.

