
CpSc 421 Introduction to Theory of Computing November 4, 2005

Today’s Lecture: Proofs

Reading:

November 4: Proofs.

November 7: Modified Turing Machines
Read:Kozenlecture 30 (orSipser3.2).

November 9: Second Midterm: in class.

November 14:Diagonalization and the Halting Problem
Read:Kozenlecture 31 (orSipser4.2).

November 16:Decidability
Read:Kozenlecture 32 (orSipser4.1).

November 18:Review and Examples.

November 21:Reductions
Read:Kozenlecture 33 (orSipserChapter 5).

November 23:Gödel’s Theorem
Read:Kozenlecture 38 (orSipser6.2).

November 25:Review and Examples.

November 28:Everything Else About Turing Machines.

November 30:Theorem Proving.

December 2:Something Fun.

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Distribution of midterm scores (cumulative fraction vs. score)

I. Midterm statistics

A. Figure 1 shows the distribution.

B. Mean= 44.8

C. Median= 44

D. Standard deviation= 22.4

II. Induction

A. Induction on strings

1. Strings are defined inductively
a. ε is a string.
b. For any stringx and symbolc, x · c is a string.
c. All strings can be derived by these two rules.

2. The standard induction schema
a. State your induction hypothesis. It should be a predicate over strings. LetP : Σ∗ → {0, 1} be this predicate.
b. Base case: proveP (ε).
c. Induction step: Prove thatP (x) ⇒ P (x · c) for anyx ∈ Σ∗ and anyc ∈ Σ. Becausex ∈ Σ∗, about the only

thing you can assume about it is thatP (x) holds.

3. Examples:
a. Prove that(x · y)R = yR · xR, wherexR = rev(x) denotes the reverse ofx (i.e. reverse the order of the

symbols inx). This if from HW1, Q1, see page 13 of the solution set.
i. Induction Hypothesis:(x · y)R = yR · xR.

In this case, the induction hypothesis is exactly the main result that we are trying to prove. In this class,
you should always state your induction hypothesis. This makes it clear that you know what you are trying
to accomplish. It also makes it easier to determine where you made a mistake (if you make one) and give
appropriate partial credit.

2

ii. Base case –y = ε:

(x · y)R = (x · ε)R, Base case hypothesis:y = ε
= xR, x · ε = x
= ε · xR, ε · x = x
= εR · xR, ε = εR

= yR · xR, y = ε

In this argument, I showed all of the steps. A shorter version is also completely acceptable:
This follows directly from the facts thatx · ε = x = ε · x andεR = ε.

iii. Induction step – assume fory = z, prove fory = z · c:

(x · y)R = (x · (z · c))R, case hypothesis:y = z · c
= ((x · z) · c)R, · is associative
= c · (x · z)R, def. rev
= c · (zR · xR), induction hypothesis:(x · z)R = zR · xR
= (c · zR) · xR, · is associative
= (z · c)R · xR, def. rev
= yR · xR, case hypothesis:y = z · c

Again, I showed all of the steps in detail. A shorter version is acceptable. The key point is that the proof
should explicitly use the induction hypothesis In this case, the definition ofrev, should also be used explicitly
– this shows why the property that we claim holds forrev, but not for all imaginable functions over strings.
With these things in mind, here’s the short version:

(x · y)R = (x · z · y)R, y = z · c
= c · (x · z)R, def. rev
= c · zR · xR, induction hypothesis
= yR · xR, def. rev, y = z · c

In this shorter version, I’ve used properties such as the associativity of· without stating them explicitly,
assuming that the reader (i.e. you) have seen enough examples with strings to take such things for granted.

b. Another example: HW1, solution set, page 6. A proof of a property of the “half” function.

4. Variations
The concatenation operator,·, is associative:(x · y) · z = x · (y · z). This can be used to show that the following
variations are also sound:
a. Replace the induction step with

prove thatP (x) ⇒ P (c · x).
b. Replace the base case with

proveP (ε) and prove∀c ∈ Σ. P (c).
Then, replace the induction step with
proveP (x) ∧ P (y) ⇒ P (x · y) for arbitraryx andy in Σ∗.

B. Induction for regular languages
1. Induction on the sequence of states of a DFA or NFA

a. The operation of a DFA (or NFA) is defined inductively.
i. δ̂(q, ε) = q

ii. δ̂(q, x · c) = δ(δ̂(q, x), c)
b. The standard induction schema

i. State your induction hypothesis. It should be a predicate over strings and states. Typically something of
the form: δ̂(q0, x) = f(x) or δ̂(q, x) = f(q, x), whereδ is the state transition function for the DFA, andf
expresses the key property that you want it to have. LetP (q, x) be this predicate.

ii. Base case: proveP (q, ε).

3

iii. Induction step: proveP (q, x) ⇒ P (q, x · c) for anyx ∈ Σ∗ and anyc ∈ Σ.
c. Examples:

i. Kozen, pp. 19-21 (proof that a particular DFA accepts strings that represent multiples of three when
interpretted as binary numbers).

ii. Kozen, lemma 4.1 (p. 23)
iii. Kozen, lemma 6.1 (p. 34)
iv. Kozen, lemma 6.2 (pp. 34-35)
v. Kozen, lemma 6.3 (p. 36)

vi. HW1, Q1 (page 2 of the solution set)
vii. HW1, Q3 (pages 6-8 of the solution set)

2. Induction on the structure of regular expressions
a. Regular expressions are defined inductively.

i. ∅, ε, andc (for anyc ∈ Σ) are the basic regular expressions.
ii. The operators+, ·, and∗ construct more complicated regular expressions out of simpler ones.

b. The outline of an induction proof for regular expressions:
i. State the induction hypothesis.

ii. Three cases for the base step:∅, ε, andc (for anyc ∈ Σ).
iii. Three cases for the induction stepα1 + α2, α1 · α2, andα∗1, whereα1 andα2 are regular expressions.

For at least one of these cases, you’ll need to use the assumption that the induction hypothesis holds forα1

and/orα2; otherwise, this isn’t an induction proof. Typically, you’ll need the induction hypothesis for the
proofs of each of these three cases.

c. Examples:
i. Solution set for HW1, Q1, “short solution” (pages 12-13).

ii. Kozen, theorem 8.1, proof that every regular expression can be recognized by a NFA, pages 46-47.

C. Induction for context-free languages
1. Induction on the sequence of configurations of a PDA

a. The operation of a PDA is defined inductively.
i. A configuration is a tuple,(p, x, α) wherep ∈ Q is the current state of the PDA,x ∈ Σ∗ is the unread

portion of the input string, andα ∈ Γ∗ is the string of symbols on the stack (leftmost symbol is the top-of-
stack).

ii. Let M be a PDA. We say that
(q, cx,Aβ) 1−→

M
− (q′, x, µβ)

if (q, c, A) → (q′, µ) ∈ δ, whereδ is the transition relation for the PDA. Likewise, we say that

(q, x, Aβ) 1−→
M

(q′, x, µβ)

if (q, ε, A) → (q′, µ) ∈ δ.
We say that

(q, xy, β) n+1−→
M

(q′, y, µν)

iff there is somec ∈ Σ ∪ {ε}, z ∈ Σ∗, p ∈ Q, andA ∈ Γ such thatx = zc and

(q, z, β) n−→
M

(p, ε, Aν)

and(p, c, A) → (q′, µ) ∈ δ.
We write(q, xy, α) ∗−→

M
(q′, y, β) to denote that there exists somen such that(q, xy, α) n−→

M
(q′, y, β)

iii. Note that(q, xy, α) ∗−→
M

(q′, y, β) holds iff there are configurationsU0, U1, . . .Uk such thatU0 =
(q, xy, α), Uk = (q′, y, β), and for alli ∈ {1 . . . k}

Ui−1
1−→
M

Ui

Thus, we reason about the behaviour of PDAs by reasoning about sequences of configurations, and these
sequences are defined inductively. Proofs about the behaviour of PDAs are naturally formulated using in-
duction.

4

iv. M acceptsx iff (q0, x,⊥) ∗−→
M

(q′, ε, β) whereq′ ∈ F if the M accepts by final state, andβ = ε if M
accepts by empty stack.

b. The standard induction schema
i. State your induction hypothesis. It should be a predicate over configurations. Typically something of the

form:
(q0, xy,⊥) n−→

M
(q, y, α) ⇔ P (q, x, y, α)

for some predicateP .
ii. Base case: proveP (q0, ε, x,⊥), in other words, show that your claim holds in the initial state of the

machine when all of the input string,x, is unread.
iii. Induction step: Show that IfP (q, x, cz, Aβ) and(q, c, A) → (q′, γ) ∈ δ (for anyc ∈ Σ ∪ {ε}, etc.), then

P (q′, z, γβ).
c. Example: a PDA for balanced parentheses.

From Kozen example 23.1 (p. 161):

M = (Q,Σ,Γ, δ, q,⊥, ∅)
Q = {q}
Σ = {[,]}
Γ = {⊥, [}
δ = { (q, [,⊥) → (q, [⊥),

(q, [, [) → (q, [[),
(q,], [) → (q, ε),
(q, ε,⊥) → (q, ε)

}

This machine accepts on empty stack (as implied by the set of accepting states being empty).
i. Specifying the balance parentheses language.

Let B be the balanced parenthesis language. Let#left(x) be the number of left-parenthesis symbols in
x. Likewise, let#right(x) be the number of right-parenthesis symbols. The stringx is in the balanced
parentheses language iff (see Kozen, lecture 20, p. 135):
• #left(x) = #right(x).
• ∀y, z. x = yz ⇒ #left(x) ≥ #right(x).
In the following, we proveL(M) = B.

ii. We need to connect configurations ofM with the number of left and right parentheses in the prefix of the
input read up to that configuration. Let(q, z, α) be a configuration reached by readingy (i.e., if x ws the
original input, thenx = yz). We note that#left(α) = #left(y)− #right(y). Furthermore, the PDA can only
reach this configuration if there was no prefix ofy that had more fewer left parentheses than right.
We formalize this with the predicate:

(q, yz,⊥) ∗−→
M

(q, z, α)
⇔ ((#left(y)− #right(z)) = #left(α)) ∧ (∀u, v. y = uv ⇒ #left(u) ≥ #right(u))

Our proof, of course, is by induction.
iii. Induction hypothesis:

(q, yz,⊥) n−→
M

(q, z, α)

⇔ (α = [#left(y)−#right(y) ⊥) ∧ (∀u, v. y = uv ⇒ #left(u) ≥ #right(u))
∨ (α = ε) ∧ (z = ε) ∧ (yz ∈ B)

iv. Base case –n = 0:
(q, yz,⊥) 0−→

M
(q, z, α) ⇔ (y = ε) ∧ (α =⊥)

It is straightforward to show that this satisfies the induction hypothesis.

5

v. Induction step – assume forn prove forn + 1: Let x, the original input, equalycz with y, z ∈ Σ∗, and
c ∈ Σ ∪ {ε}. Let A ∈ Γ andβ ∈ Γ∗ such that

(q, ycz,⊥) n−→
M

(q, cz, Aβ)and (q, cz, Aα) 1−→
M

(q, z, α)

We consider each possibility for this last transition:
(q, [,⊥) → (q, [⊥): We haveβ = [0 ⊥, and the induction hypothesis yields#left(y) − #right(y) = 0.

Furthermorec = [. Thus,

#left(yc)− #right(yc) = #left(y[)− #right(y[), c = [
= #left(y) + 1− #right(y), def.#left and#right
= 1, #left(y)− #right(y) = 0

Thus, the first clause of the induction hypothesis is satisfied.
The induction hypothesis further yields that all prefixes ofy have at least as many left parentheses
as right. Appending a left parenthesis preserves this property. Thus, the induction hypothesis is
satisifed by this case.
As usual, I gave lots of details for this first example. I will give shorter explanations for the remain-
ing cases to make it clear what is expected for homework or exam solutions.

(q, [, [) → (q, [[): An argument similar to the one above shows thatyc has one more left parenthesis
and the same number of right parentheses asy and thatα = [β. From these observations, it’s
straightforward to show that the induction hypothesis is maintained.

(q,], [) → (q, ε): In this case,yc has one more right parenthesis thany. However,β had at least one left
parenthesis; thus,y has more left parentheses than rights. This means thatyc has at least as many
left parentheses as rights. From these observations, it’s straightforward to show that the induction
hypothesis is maintained.

(q, ε,⊥) → (q, ε): In this case,c = ε. By the induction hypothesis,#left(y) = #right(y), andβ =⊥.
Thus,α = ε. By the induction hypothesis, all prefixes ofy have at least as many left parentheses as
right. Thusy ∈ B, andycz = y is in B as well. This satisfies the second disjunct of the induction
hypothesis.

Finally, we have to show that if all prefixes ofyc have at least as many left parentheses as right, then the
machine can reach a configuration that satisfies the induction hypothesis. By the induction hypothesis,M
was in such a configuration after readingy. If c is a left parenthesis, then because the stack is always of the
form [∗ ⊥ (by the induction hypothesis), a transition is allowed. Likewise, ifc is a right parenthesis, then
if yc has at least as many left parentheses as right, theny had more lefts than rights, and the top of stack
symbol was a[in the configuration after readingy. Thus,M can make a transition.

vi. Completing the proof. Having completed the induction lemma, the proof thatL(M) = B is simple. Let
w ∈ B. By the induction result above,

(q, cz,⊥) ∗−→
M

(q, ε,⊥)
or (q, cz,⊥) ∗−→

M
(q, ε, ε)

In the second case,w ∈ L(M). In the former,M can make theε move(q, ε,⊥) → (q, ε) and acceptw.
Conversely, letw ∈ L(M). This means that

(q, cz,⊥) ∗−→
M

(q, ε, ε)

and by the induction result, we have thatw ∈ B.

2. Induction on the steps of a derivation of a CFG
a. The proof schema

i. Induction Hypothesis: this will make some assertion about the strings in partial derivations. These strings
are mixtures of terminals and non-terminals.

ii. Base case – zero steps: you must show that the induction hypothesis holds for the start symbol.

6

iii. Induction step – assume forn steps prove forn + 1: show that each production of the grammar preserves
the induction hypothesis.

b. Important note: note that induction on the steps of the derivation isnot the same as induction on the length of
the final string. With a CFG, it is not the case that all strings of lengthn + 1 are obtained by deriving a string of
lengthn and appending one terminal. Once a string consisting entirely of terminals has been derived, no further
productions can be applied – productions only apply to non-terminals.
More concretely, consider the balanced parenthesis language. How many strings are in this language of length
11? None. Every string in the balanced parenthesis language has an equal number of left and right parentheses
and thus an even number of terminals total. Thus, we can’t obtain the strings of length 12 (there are 394) by
starting with a non-existent string of length 11 and adding a non-terminal.
When reasoning about a CFG, the induction will be over the steps of the derivation. As noted above, the
induction hypothesis will typically make an assertion about the relationships that must hold between the various
terminals and non-terminals in the partial derivations at each step along the way.

c. Examples:
i. Kozen theorem 20.1 (proving that a CFG generates the balanced parentheses language, p. 136 – 139).

ii. Oct. 26 midterm, problem 3.

III. The pumping lemmas

A. The pumping lemma for regular languages
1. Formal statement: IfB is a regular langauge, then there exist some integerk, such that for every string,xyz ∈ B

with |y| ≥ k, there exist stringsu, v, w with uvw = y and|v| ≥ 1 such thatxuviwz ∈ B for anyi ≥ 0.

2. How to use the pumping lemma to show that a language isnot regular (see Kozen’s “game with a demon” p.
70-71):
a. Find a way to generate a string,xyz for any proposedk, such thaty has no substring that can be repeated an

arbitrary number of times and still keep the string in the language.
b. A suitable answer can be along the lines of:

“Let w = ak(bc)2k+1dk−2. Force the demon to pump theak portion. A sentence or two to explain why
this produces a string not inB.”

Note thati = 0 andi = 2 are common values for showing that the string is not in the language, but any value
will work (e.g.4, 17, k2, etc.).

c. Note that the string that you present to the demonmustdepend on the value ofk.

3. Examples
a. Kozen example 12.1 (anbn, p. 72)
b. Kozen example 12.2 (an!, p. 73)
c. Homework 2, question 1.
d. Oct. 26 midterm, question 1.b.

B. An alternative to pumping
1. Although we didn’t cover it in class, many solutions that I’ve received to various problems attempt to use the

following property of regular langauges. I’ll state it explicitly so you can use it from now on.

2. Let B be a language. We writex ≡B y iff for all stringsz, xz ∈ B ⇔ yz ∈ B. The languageB is regular iff it
has a finite set of equivalence classes.

3. Example (Oct. 26 midterm, Q1.b): show that{w|#a(w)− #a(w) < 3} is not regular.
a. For i ≥ 1, let wi = a2+i.
b. Note thatwi 6∈ B, butwib

i is in B.
c. Thus, all of thewi are in different classes. In particular, consideri < j. Then,wib

i ∈ B butwjbi 6∈ B. Thus,
wi andwj are distinguishable. There are an infinite number of choices fori. Thus,B is not regular.

4. A general remark
a. This approach can also help you decide whether or not a language is regular. If you think that it’s regular, try

to identify a finite set of equivalence classes for the language. Conversely, if you think that it’s not regular, try

7

to find an infinite set of string such that no two are in the same equivalence class.
b. Example: figure out what the equivalence classes are for each of the languages from the Oct. 26 midterm, Q1.

C. The pumping lemma for context-free languages
1. Formal statement: IfB is a context-free langauge, then there exist some integerk, such that for every string,

z ∈ B with |z| ≥ k, there exists stringsu, v, w, x, y with uvwxy = z, |vx| ≥ 1, and |vwx| ≤ k such that
uviwxiz ∈ B for anyi ≥ 0.

2. How to use the pumping lemma to show that a language isnot context-free (see Kozen’s “game with a demon” p.
153-154):
a. Find a way to generate a string,z for any proposedk, such thaty has no pair of substrings (i.e.v andx)

that are close (i.e.|vwx| ≤ k) and can be repeated an arbitrary number of times and still keep the string in the
language.

b. A suitable answer can be along the lines of:
“Let z = ak(bc)2k+1dk−2. Consideruvwxy = z, such thatuviwxiz ∈ B for all i. To keep the number of
a’ss, bc’s, andd’s suitably balanced (the details depend on the particular language,B). Therefore,v must
contain somea’s andx must contain somed’s. But this means|vwx| ≥ k+3 which violates the conditions
of the pumping lemma. Thus,z cannot be pumped andB is not context free.

c. Note that the string that you present to the demonmustdepend on the value ofk.

3. Examples
a. Kozen example 22.3 (anbnan, p. 154)
b. Kozen example 22.4 (ww, pp. 154-155)
c. Homework 3, question 3.

IV. Closure properties

A. The regular languages are closed under:
1. union, intersection, and complement (and therefore under arbitrary boolean/set operations)

2. concatenation and asteration

3. homomorphisms and inverse homomorphisms

4. plus a numerous other operations that we’ve seen at one point or another such as:
a. reversal
b. half, middle-third, shuffle, etc.

B. The context-free languages are closed under
1. union

2. concatenation and asteration

3. homomorphisms and inverse homomorphisms

C. A few more remarks
1. Relationships between the language classes

a. Every DCFL (deterministic CFL) is a CFL.
b. Every regular language is a DCFL (and therefore a CFL).
c. There are CFLs that are not DCFLs (e.g.{x|x = ww}), and DCFLs that are not regular (e.g.anbn). Thus,

these containments are strict.

2. What is a class of languages?
a. An alphabet,Σ, is afiniteset of symbols.
b. Σ∗ is the set of all strings formed by symbols inΣ.
c. A language is a subset ofΣ∗.
d. A class of languages (e.g. the regular languages, or the context-free languages) is a subset of2Σ∗

.

3. One final clarification
a. The regular languages are a subset of the context free languages. Both classes are subsets of2Σ∗

.

8

b. Let BR be a regular language, andBCFL be context-free. It can well be the case thatBCFL ⊂ BR. This does
not contradict the fact that the set of regular languages is a subset of the set of context-free languages.

c. In particular,Σ∗ is regular. Every context-free language is a subset ofΣ∗.
d. Thus, you cannot prove thatB is not regular by showing some languageB̃ such thatB̃ ⊆ B andB̃ is not

regular.
e. Note thatΣ∗ and∅ are both regular. CFLs give us sets that can make finer distinctions between strings than

regular languages can. We’ll show shortly that Turing machines can make finer distinction yet.
You can think of the more powerful models as being able to resolve more detail to decide which strings are in
and which are out. You can always find a regular language that contains any other language (e.g.Σ∗ contains
all languages). Likewise, you can find a regular language that is contained in any other language (e.g.∅). But,
these may be very coarse approximations of the language that you actually want.

9

