
CpSc 421 Introduction to Theory of Computing October 31, 2005

Today’s lectures: Turing Machines

Reading:

October 31: Turing Machines and Effective Computability
Read:Kozenlecture 28 (orSipser3.1).

November 2: More Turing Machines
Read:Kozenlecture 29 (orSipser3.1 again).

November 4: Review and Examples.

November 7: Modified Turing Machines
Read:Kozenlecture 30 (orSipser3.2).

November 9: Second Midterm: in class.

November 14:Diagonalization and the Halting Problem
Read:Kozenlecture 31 (orSipser4.2).

November 16:Decidability
Read:Kozenlecture 32 (orSipser4.1).

November 18:Review and Examples.

November 21:Reductions
Read:Kozenlecture 33 (orSipserChapter 5).

November 23:Gödel’s Theorem
Read:Kozenlecture 38 (orSipser6.2).

November 25:Review and Examples.

November 28:Everything Else About Turing Machines.

November 30:Theorem Proving.

December 2:Something Fun.
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I. The Formalist Programme

A. Formalizing Mathematics

1. During the second half of the19th century, mathematicians discovered that much of mathematics could be for-
malized using set theory. This removed ambiguity, provided a rigorous basis for intuitive ideas, revealed connections
between various branches of mathematics, and led to new results. Overall it was quite successful.

2. Once everything is viewed in terms of sets, one ends up needing sets that contain sets as members – just as we
needed the power set of the states of an NFA to construct the equivalent DFA.
a. Let S be the set of all sets. Obviously, this is what we need as our domain of discourse if we want to talk about

sets in general.
b. Note thatS ∈ S. In other words,S contains itself. There are other situations in which a set ends up containing

itself.
c. Now, letT = {A ∈ S| A 6∈ A}.

T is the set of all sets that don’t contain themselves. IsT ∈ T?
• If T ∈ T , thenT contains itself. Therefore,T 6∈ T by the definition ofT .
• On the other hand, ifT 6∈ T , thenT doesn’t contain itself. Therefore,T ∈ T by the definition ofT .
Either choice leads to a contradiction. This is known as “Russell’s Paradox” (after the mathematician Bertrand
Russell).

3. Mathematicians generally blamed Russell’s Paradox on the vaguaries of natural language. We definedS with an
English sentence, and the definition ofT usesS.
a. Perhaps, we could find a way to define sets that didn’t require resorting to natural language.
b. If we’re lucky, we might find a definition that avoids creating problems like Russell’s paradox.
c. Many mathematicians attempted to do this. The most valiant effort was probably that by Russell and White-

head when they wrotePrincipia Mathematica. However, evenPrincipia is unsatisfying. It makes a start at
putting all of mathematics into a formal framework, but it shows that it takes lots of work to cover very simple
ideas. It left the question open, could the formalization of all of mathematics be completed if enough effort were
invested?

B. The Hilbert Questions

1. The setting: International Conference of Mathematicians, Paris, 1900

2. Hilbert described a vision for mathematics
a. Develop a formal approach to mathematics that is

i. Sound: it is not possible to prove a contradiction or falsehood.
ii. Complete: all true statements can be proven.

iii. Decidable: given a true statement, its proof can be derived in a finite number of steps.
b. He then mentioned 23 open problems in mathematics that should be solved by this approach. He started with

the continuum hypothesis, and included Fermat’s Last theorem and many other famous problems.
Here’s an excerpt from the speech. Note his confidence that “we have, nevertheless, the firm conviction that their
solution must follow by a finite number of purely logical processes.”

If we do not succeed in solving a mathematical problem, the reason frequently consists in our failure to
recognize the more general standpoint from which the problem before us appears only as a single link
in a chain of related problems. . . . Occasionally it happens that we seek the solution under insufficient
hypotheses or in an incorrect sense, and for this reason do not succeed. The problem then arises: to show
the impossibility of the solution under the given hypotheses, or in the sense contemplated. Such proofs of
impossibility were effected by the ancients, for instance when they showed that the ratio of the hypotenuse
to the side of an isosceles right triangle is irrational. In later mathematics, the question as to the impossibility
of certain solutions plays a preeminent part, and we perceive in this way that old and difficult problems,
such as the proof of the axiom of parallels, the squaring of the circle, or the solution of equations of the fifth
degree by radicals have finally found fully satisfactory and rigorous solutions, although in another sense
than that originally intended. It is probably this important fact along with other philosophical reasons that
gives rise to the conviction (which every mathematician shares, but which no one has as yet supported by
a proof) that every definite mathematical problem must necessarily be susceptible of an exact settlement,
either in the form of an actual answer to the question asked, or by the proof of the impossibility of its
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solution and therewith the necessary failure of all attempts. Take any definite unsolved problem, such as the
question as to the irrationality of the Euler-Mascheroni constantC, or the existence of an infinite number
of prime numbers of the form2n+1. However unapproachable these problems may seem to us and however
helpless we stand before them, we have, nevertheless, the firm conviction that their solution must follow by
a finite number of purely logical processes.

From: http://aleph0.clarku.edu/ djoyce/hilbert/problems.html.

II. Turing Machines

A. The Machinery

1. A tape
a. The tape holds the initial input.
b. The Turing machine can overwrite symbols on the tape.

2. A finite state controller – at each step the controller:
a. reads a symbol from the tape
b. based on the symbol and current state: the machine

i. writes a symbol at the position from which it just read,
ii. moves the read/write head one position to the left or to the right, and

iii. updates its state

B. Formal Descriptions of Turing Machines

1. The ingredients
a. A tape alphabet,Γ.
b. An input alphabet,Σ ⊂ Γ.

We need a subset so that the machine can tell where the input ends.
c. A set of states for the controller,Q.
d. A transition function,δ : (Q× Γ) → (Q× Γ× {L,R})
e. Some special states and symbols:

s: the start state.
t: the accepting state.
r: the rejecting state.

: a blank.
`: the left tape end-marker.

2. The tuple:(Q,Σ,Γ,` , , δ, s, t, r)
Nine pieces, but we’ve defined them all above. Note thatQ, Γ, andδ really capture the operation of the machine.
The other pieces are there to say how to start the machine, how to know where the input ends, and how to know
when the machine is done.

3. Configurations
The state of the machine is determined by the state of the finite-state controller,q ∈ Q, the contents of the tape,
x ∈ Γ∗, and the position of the read/write head,n ∈ N.
a. We write a configuration as a tuple,(q, x, n).
b. Noting that the tape extends infinitely to the right with blanks, we typically writex = z ω.

C. An Example

1. Figure 1 shows a Turing machine that recognizes the languageanbncn.

2. Note that this language is neither regular nor context-free.

3. The machine is a slight simplification of the one presented by Kozen. It operates as follows:
a. states: Make a left-to-right pass over the input string, and append aa.
b. state1: Return to the left end marker.
c. states2− 5: Make a left-to-right pass replacing the firsta with a , and likewise for the firstb and the firstc.

If the tape is of the form ∗ a, then accept. Otherwise, if the tape isn’t of the form(a + )∗(b + )∗(c + )∗ a,
then reject. Otherwise, go back to state1, return to the left end-marker, and make another pass.
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Figure 1: A Turing Machine That Recognizesanbncn

4. Figure 2 shows the sequence of configurations when processingaaabbbccc. The position of the read/write head
is indicated by underlining the corresponding tape symbol.

III. Where We Go From Here

A. What Turing Machines Can Do

B. What Turing Machines Can’t Do

C. Universality
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Step State Tape
0 s `aaabbbcccc ω

1 s `aaabbbccc ω

2 s `aaabbbccc ω

3 s `aaabbbccc ω

4 s `aaabbbccc ω

5 s `aaabbbccc ω

6 s `aaabbbccc ω

7 s `aaabbbccc ω

8 s `aaabbbccc ω

9 s `aaabbbccc ω

10 s `aaabbbccca ω

11 1 `aaabbbccca ω

12 1 `aaabbbccca ω

13 1 `aaabbbccca ω

14 1 `aaabbbccca ω

15 1 `aaabbbccca ω

16 1 `aaabbbccca ω

17 1 `aaabbbccca ω

18 1 `aaabbbccca ω

19 1 `aaabbbccca ω

20 1 `aaabbbccca ω

21 2 `aaabbbccca ω

22 3 ` aabbbccca ω

23 3 ` aabbbccca ω

24 3 ` aabbbccca ω

25 4 ` aa bbccca ω

26 4 ` aa bbccca ω

27 4 ` aa bbccca ω

28 5 ` aa bb cca ω

29 5 ` aa bb cca ω

30 5 ` aa bb cca ω

31 1 ` aa bb cca ω

32 1 ` aa bb cca ω

33 1 ` aa bb cca ω

34 1 ` aa bb cca ω

35 1 ` aa bb cca ω

36 1 ` aa bb cca ω

37 1 ` aa bb cca ω

38 1 ` aa bb cca ω

39 1 ` aa bb cca ω

40 2 ` aa bb cca ω

41 2 ` aa bb cca ω

42 3 ` a bb cca ω

43 3 ` a bb cca ω

44 3 ` a bb cca ω

45 4 ` a b cca ω

46 4 ` a b cca ω

47 4 ` a b cca ω

48 5 ` a b ca ω

49 5 ` a b ca ω

50 1 ` a b ca ω

Step State Tape
51 1 ` a b ca ω

52 1 ` a b ca ω

53 1 ` a b ca ω

54 1 ` a b ca ω

55 1 ` a b ca ω

56 1 ` a b ca ω

57 1 ` a b ca ω

58 1 ` a b ca ω

59 1 ` a b ca ω

60 2 ` a b ca ω

61 2 ` a b ca ω

62 2 ` a b ca ω

63 2 ` a b ca ω

64 3 ` b ca ω

65 3 ` b ca ω

66 3 ` b ca ω

67 4 ` ca ω

68 4 ` ca ω

69 4 ` ca ω

70 5 ` a ω

71 1 ` a ω

72 1 ` a ω

73 1 ` a ω

74 1 ` a ω

75 1 ` a ω

76 1 ` a ω

77 1 ` a ω

78 1 ` a ω

79 1 ` a ω

80 1 ` a ω

81 2 ` a ω

82 2 ` a ω

83 2 ` a ω

84 2 ` a ω

85 2 ` a ω

86 2 ` a ω

87 2 ` a ω

88 2 ` a ω

89 2 ` a ω

90 2 ` a ω

91 t ` a ω

Figure 2: Configurations for the TM from figure 1 acceptingaaabbbccc ∈ anbncn
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Fromhttp://members.cox.net/mathmistakes/greatestmistake.htm
(Copyright by Paul Cox).

The Greatest Math Mistake of the Century

The following is a myth based on a true story. It contains inaccuracies that exist only because the story would be long,
complicated and incomprehensible to most if I told it accurately. I have tried to correct some of the inaccuracies in the
footnotes for you purists out there. Links are to the History of Mathematics page.

I think it was Benjamin Franklin, who once said, “The only bad mistakes are the ones you don’t learn from.” A lesson for
us all.

That being the case, I shall tell you the story of a good math mistake, because we learned from this one. In fact, we learned
so much that this math mistake is not only good, it is great, perhaps the greatest math mistake of the century. It was made by
David Hilbert early in the century.

Hilbert was a great mathematician, who mastered all the fields of math there were, because you could still do that back then.
So it is surprising that such a genius could make such a blunder.

Hilbert wanted to solve every arithmetic problem there is1. Or, rather, find a method that could be used to solve every one.
It seemed obvious that they were all solvable! That was Hilbert’s big mistake.

“Yeah, how hard can it be?”, said Bertrand Russell2. “1 + 1 = 2, everything follows from that”, said Alfred North
Whitehead3. Many years passed beforePrincipia Mathematicacame about4 (it was harder than they thought), “but Hilbert is
right, and here’s the proof”, said they.

“Not so fast”, said a tall gangly Kurt G̈odel5 in the back row with an Austrian accent. “The problem of solving every
arithmetic problem is itself an arithmetic problem, and proving that all arithmetic is solvable is also an arithmetic problem;
Hence,proving all arithmetic is not solvable is also an arithmetic problem. And, if this last problem is solved then we have
proven arithmetic false, but if we cannot solve this last problem, then arithmetic is, by counter example, incomplete.” Kurt
Gödel’s incompleteness theory proved Hilbert wrong6.

Russell and Whitehead took up Philosophy, which made them much more popular, since no one understoodPrincipia
anyway.

A few years later a British track star with the unlikely name of Al Turing7 asked an unlikely question8 “What if we limited
math to what could be done by a computer, would it be subjected to Gödel’s restrictions?”
“What’s a computer?”, they responded.
“Well, it is a machine that can do math for you.”, said Al.
“Interesting!”, they responded.
“You see if you limit the eigenstates to what is mechanical you can use a similar trick Gödel used.. . . ”
“What kind of a machine?”
“Just any computing machine, now as I was saying. . . ”
“Wait a second, are you saying it is possible to build a machine to do math for us?”
“Yes, and with it I can prove. . . ”

1Hilbert’s challenge can be found in his famous 1901 lecture on 23 unsolved problems in Mathematics. Hilbert was a founder of the Formalist school of
mathematics which believed it was possible to solve every math problem. I use the term “arithmetic” where in reality it was a general class of logic structure
called formal systems, what we call ”arithmetic” being an example of a formal system, others include set theory, linear algebra, polynomial algebra, symbolic
logic, and all computer languages. Noam Chomsky of MIT believes that human languages may also be formal in structure.

2Seehttp://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Russell.html.
3Seehttp://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Whitehead.html.
4Principia Mathematicawas started in 1910 and finished in 1913.
5Seehttp://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Godel.html.
6Kurt Gödel gave his lecture in 1931.
7Seehttp://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Turing.html.
8Turing’s workOn Computable Numberswas published in 1936.
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“Hold on a minute,” they responded, “Are you telling us that we have rooms filled with accountants using slide rules and
abacuses figuring out all our companies finances and all this time we could have just used some bloody machine do it for us?”
“Well they can’t do everything, as I was about to show you. . . ”
“Where can we get one of these computers?”
“Oh forget it!”, responded Al dejectedly.

What Turing was trying to say was this: In Kurt Gödel’s theory, he used a technique of enumerating every arithmetic
problem there is.1 + 1 = 2 is enumerated to 45236, etc. Using the same technique, we can create a theoretical operating
system, for a theoretical device that can do math automatically. The “Turing Machine” as described was completely impractical
and could never be built. But, it did not rule out the possibility of a practical design. A problem for someone else.

The someone else was Turing’s professor, John Von Neumann9. He actually attended Gdel’s original lecture. And, may be
the only man, besides Hilbert, to understand it at the time. Since they all spoke German.

“A computer you say. . . Hmm, very interesting.”, said Von Neumann, “I have not seen one, but if I were to build one, I
would need a input device of some sort.” “Oooh”, they said. “And some kind of control mechanism, electrical if possible.”
“Ahhh”, they said. “It would be better if it were binary, that way memory could be created easily.” “Wow, memory!” ”And of
course you would need a means of receiving output, like a television.” “What’s a television?”

The (ahem!) “Von Neumann Machine” was born. John may be famous for many things, Humility was not one of them.
Luckily “computer” had a better ring to it.

Later, Von Neumann did actually help design the first computer, with a couple of other “John”s namedEckert and Mauchly10.
But, just in case the computer started taking control of the world like in those sci-fi stories, Von Neumann helped design the
Atom Bomb the previous year. He then invented Game Theory, which proved that the bomb should never be used, unless you
are really really mad11. Same goes for computers for that matter.

Eckert and Mauchly went on to actually build the first programmable computer in Philadelphia. Just across the bridge from
New Jersey where Kurt G̈odel lived12. Small world.

Later we learned Alan Turing built a programmable electronic computer predating the one in PhillyTuring’s digital elec-
tronic computer ”Colossus” was completed in Britain in 1943, followed by Colossus II in 1944. Other computers predat-
ing ENIAC were built by Charles Babbage and Ada Lovelace (Britain,1842, mechanical, never finished), Herman Hollerith
(America,1890, Mechanical), Vannevar Bush (America,1930 analog electro-mechanical), Konrad Zuse (Germany,1939, digital
electro-mechanical), Helmut Hoelzer (Germany,1941, analog electronic), Howard Aiken and Grace Hopper (America, 1942,
electro-mechanical), and John Atanasoff and Clifford Berry (America, 1942, digital electronic, never finished).. It helped win
the war, but Turing could not take credit or make any money from his invention.¡br¿ It was Top Secret.

Alan Turing committed suicide13 after a sex scandal. (He was gay – long before it became trendy.) John Von Neumann died
of radiation14 after standing too close to the Atom Bomb. Kurt Gödel, after mathematically proving food is bad for you, died
of starvation15. They were all completely crazy when they left this mortal realm. . . Computers can do that.

David Hilbert lived a long and happy life16, having never lived to see a computer. Never knowing how big the consequences
of his great little mistake were. We unfortunately were not so lucky.

The rest, as they say, is history. Later Bill Gates came along and took over the world, Where is Von Neumann’s bomb when
you really need it?

9Seehttp://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Von Neumann.html. Von Neumann taught at Princeton University in the late
30’s while Turing was a grad student. He worked on designs of “Von Neumann Machines” through the early 1940’s. Other Pre-realization computer pioneers
included Norbert Weiner, Howard Aiken, Alonzo Church, and Alwin Walther of Germany. The latter working with computer pioneer Konrad Zuse. The two
worked for Germany during W.W.II completely unaware of the work of Turing or Von Neumann.

10In truth, Von Neumann merely played an advisory role on ENIAC. His role on UNIVAC was more significant. Seehttp://www-groups.dcs.st-
and.ac.uk/∼history/Mathematicians/Eckert John.html.

11Von Neumann worked for the Manhattan Project at the end of W.W.II, his game theory argued strategies for the Cold War that inspired the moviesDr.
StrangeloveandWar Games.

12During the 40’s and early 50’s, G̈odel worked with Albert Einstein at Princeton University. He was portrayed in the 1996 movieIQ by an actor who looked
nothing like him.

13Died 1954 in England.
14Died 1957 of Brain Cancer in Washington D.C.
15Died 1978 in Princeton, New Jersey.
16Hilbert retired in 1930 and despite the war, died peacefully in Germany in 1943.
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