
CpSc 421 Introduction to Theory of Computing October 19 & 21, 2005

Today(s)’s lectures: From PDAs to CFLs

Reading:

October 19: From PDAs to CFLs
Read:Kozenlecture 25 (orSipser2.2).

October 21: Deterministic PDAs
Read:Kozenlectures E and F.

October 24: Parsing
Read:Kozenlecture 26 (not inSipser).

October 26: Midterm: In class

October 28: A Parsing Algorithm
Read:Kozenlecture 27 (not inSipser).

October 31: Everything else about CFLs

November 2: Turing Machines and Effective Computability
Read:Kozenlecture 28 (orSipser3.1).

November 4: More Turing Machines
Read:Kozenlecture 29 (orSipser3.1 again).

November 7: Modified Turing Machines
Read:Kozenlecture 30 (orSipser3.2).

November 9: Diagonalization and the Halting Problem
Read:Kozenlecture 31 (orSipser4.2).

November 14:Decidability
Read:Kozenlecture 32 (orSipser4.1).

November 16:Reductions
Read:Kozenlecture 33 (orSipserchapter 5).

November 18:Gödel’s Theorem
Read:Kozenlecture 38 (orSipser6.2).

November 21:Everything else about Turing Machines

November 23&25:Timed Automata

November 28&30:Theorem Proving

December 2:Something Fun

1

0

(a, ⊥) −> ⊥
⊥) −> ⊥(b,

(a, ⊥) −> ⊥
⊥) −> ⊥(b,

) −> (a,
⊥(a, ⊥) −>

⊥⊥) −> (b,

⊥⊥) −> (b,
⊥(a, ⊥) −>

6

⊥⊥) −> (b,
⊥(a, ⊥) −>

8

(a,) −>

) −> (b,

) −> (b,
(a,) −>

) −> (b,
(a,) −>

⊥) −> ⊥(b,

⊥) −> ⊥(b,

⊥) −> ⊥(a,

) −> (b,

) −> (b,

) −> (a,

) −> ε(a,

) −> ε(a,

) −> ε(a,
) −> ε(b,

) −> ε(b,

21

3

(ε, ⊥) −> ε

(ε, ⊥) −> ⊥

5

4

7

⊥) −> ⊥(a,

) −> ε(b,

9 (ε, ⊥) −> ε 10

Figure 1: A NPDA for{x| ∼ ∃w. x = ww}

I. A non-deterministic automaton with multiple states

A. Figure 1 shows a NPDA that recognizes the languageB = {x| ∼ ∃w. x = ww}.

B. Here are some sample executions:
1. x = aaa

a. This string has an odd length; therefore, it must be in the languageB.
b. The machine transitions to state1 on the first transition. From there on, the machine is in state1 if the prefix

that it has read is of odd length and state2 if it’s of even length. If the machine finishes reading the string and is
in state1, it makes an epsilon move to state3 and accepts.

c. The sequence of configurations

step input state stack
0 aaa 0 ⊥
1 aa 1 ⊥
2 a 2 ⊥
3 ε 1 ⊥
4 ε 3 ε, accept

2. x = abbaabaa
a. This string has an even length. Lety = abba andz = abaa . Note thatx = yz, |y| = |z|, andy 6= z. Thus,

x ∈ B.
b. The machine transitions to state4 on the first transition. It reads until it encounters a symbol ofy that doesn’t

match the corresponding symbol ofz. In this case, this is the third symbol of each string. This pair of symbols

2

proves thaty 6= z. The machine moves to state7 (to remember theb). The remaining actions in states 7, 8, and
9 count the number of symbols before and after these special ones to verify that they are in the same positions
in y andz. See Kozen, example 23.2 (page 162-163).

c. The sequence of configurations

step input state stack
0 abbaabaa 0 ⊥
1 abbaabaa 4 ⊥
2 bbaabaa 4 • ⊥
3 baabaa 4 •• ⊥
4 aabaa 7 •• ⊥
5 abaa 7 • ⊥
6 baa 7 ⊥
7 aa 8 • ⊥
8 a 9 • ⊥
9 ε 9 ⊥

10 ε 10 ε, accept

II. An equivalent NPDA with only one state –
The main idea: use the stack to record the state

A. First attempt: replaceΓ with Q× Γ
1. Let’s try the example withabbaabaa again

2. The sequence of configurations

step input state stack
0 abbaabaa ∗ (0,⊥)
1 abbaabaa ∗ (4,⊥)
2 bbaabaa ∗ (4, •)(?,⊥)

where(0,⊥) means stack-symbol⊥ and state0, and∗ denotes the only state of the one-state machine. Note that
from step 1 to step 2, the original machine popped⊥ off the stack and pushed• ⊥ onto the stack. Now, what state
should we use to label each of these stack symbols? Obviously, we should label the• with state4 because that’s
where the machine goes. But what about(?,⊥)? We won’t care what its state is until it becomes the top of stack
symbol. What will the state of the original machine be when we get there?

3. To figure out how to label symbols, we’ll tag each stack symbol from I.B.2.c with the step when it was pushed
onto the stack. Then, when the symbol becomes the top-of-stack one, we’ll know what state the machine is in, and
how the symbol should have been tagged when it was originally put on the stack.

step input state stack
0 abbaabaa 0 ⊥0

1 abbaabaa 4 ⊥1

2 bbaabaa 4 •2 ⊥2

3 baabaa 4 •3•3 ⊥2

4 aabaa 7 •4•3 ⊥2

5 abaa 7 •3 ⊥2

6 baa 7 ⊥2

7 aa 8 •7 ⊥7

8 a 9 •8 ⊥7

9 ε 9 ⊥7

10 ε 10 ε, accept

3

Now we see that that the⊥ that was pushed onto the stack in the transition from step 1 to step 2 will be exposed on
the top of the stack at step 6 when the original machine is in state 7. Thus we should mark it with state 7.
How does the NPDA know that it should choose 7 as the marker?
We’ll use non-determinism. I’ll fill-in the details below.

4. Continuing with the tagged version

step input state stack
0 abbaabaa ∗ (0,⊥)
1 abbaabaa ∗ (4,⊥)
2 bbaabaa ∗ (4, •)(7,⊥)
3 baabaa ∗ (4, •)(7, •)(7,⊥)
4 aabaa ∗ (7, •)(7, •)(7,⊥)
5 abaa ∗ (7, •)(7,⊥)
6 baa ∗ (7,⊥)
7 aa ∗ (8, •)(9,⊥)
8 a ∗ (9, •)(9,⊥)
9 ε ∗ (9,⊥)

10 ε ∗ ε, accept

5. How can we do this with non-determinism?
a. Let δ be the transition relation of the original machine, andδ′ be the relation for the modified machine.
b. For each transition((p, c, A), (q, B1B2 . . . Bk)) ∈ δ, we could include the transitions:

((∗, c, (A, p)), (q1, B1)(q2, B2) . . . (qk, Bk))

in δ′ for all possible combinations ofq1, q2, . . . qk ∈ Q.
But, this would let the machine transition toanystate of the original machine for any transition. Not quite what
we want.

c. We can start to solve this problem if we require thatq1 = q in the construction above. However, we still have
no guarantee thatq2, . . . qk correspond to states of the original machine.

B. The solution – keep track of two states in each stack symbol:

• The state that the original machine will be in when this symbol becomes the top-of-stack symbol.
• The state that the original machine will be in when the symbol below this one becomes the top-of-stack symbol.

I’ll explain how to do this in just a moment.
1. But, first, let’s try it with our ongoing example.

a. ReplaceΓ with Q× Γ×Q
where a stack symbol of(pAq) means that the original machine is in statep with A on the top-of-the-stack, and
the original machine will be in stateq when the symbol below this one is exposed.

b. Continuing with the tagged version

step input state stack
0 abbaabaa ∗ (0,⊥, 10)
1 abbaabaa ∗ (4,⊥, 10)
2 bbaabaa ∗ (4, •, 7)(7,⊥, 10)
3 baabaa ∗ (4, •, 7)(7, •, 7)(7,⊥, 10)
4 aabaa ∗ (7, •, 7)(7, •, 7)(7,⊥, 10)
5 abaa ∗ (7, •, 7)(7,⊥, 10)
6 baa ∗ (7,⊥, 10)
7 aa ∗ (8, •, 9)(9,⊥, 10)
8 a ∗ (9, •, 9)(9,⊥, 10)
9 ε ∗ (9,⊥, 10)

10 ε ∗ ε, accept

4

C. The transition relation for the one-state NPDA

1. Let M = (Q, Σ,Γ, δ, s,⊥, F) be an NPDA. We can assume thatF = {t}, (i.e.M has a single final state), and
thatM empties its stack when it enters statet. Let M ′ = ({∗},Σ, Q× Γ×Q, δ′, ∗, (s,⊥, t), ∅) be an NPDA with
one state,∗, that accepts by empty stack. All we have to do is constructδ′, and show that the construction is correct.

2. Constructingδ′:
a. (p, c, A) → (q, ε) ∈ δ. This means thatM popsA off the stack if it’s in statep and will go to stateq. The

corresponding top-of-stack symbol forM ′ is (p, A, q) and we can pop it off the stack if the next input symbol is
a c. In other words

(∗, c, (p, A, q)) → (∗, ε) ∈ δ′

Note that we will constructδ′ to ensure that whatever symbol is uncovered when we pop(p,A, q) off of the
stack is of the form(q, B, r) for someB ∈ Γ and somer ∈ Q (or q = t and the stack will be empty).

b. (p, c, A) → (q, B) ∈ δ. This means thatM readsc, replacesA with B, and moves to stateq. Note that
whatever stack symbol was underA will be underB. Thus,

(∗, c, (p, A, r)) → (∗, (q, B, r)) ∈ δ′

In other words, we go from saying that the machine will reach stater when it’s finished the derivation associated
with A to saying that it will reach stater when it finishes the derivation associated withB.

c. (p, c, A) → (q0, B1, B2, . . . Bk) ∈ δ. Now, M ′ uses non-determinism to “guess” what stateM will be in at
the end of processing each of theBi. Let’s say thatM ′ had the top-of-stack symbol(p,A, qk); then we know
thatM will be in stateq0 after this transition. Thus, we’ll translateB1 to (q0, B1, q1) for someq1 ∈ Q. But
this means thatM must be inq1 whenB2 is on the top of the stack, so, we translateB2 to (q1, B2, q2) for some
q2 ∈ Q, and so on. Finally, we note that when the derivation forBk completes, we will expose whatever stack
symbol was under(q, A, qk). Thus, we translateBk to (qk−1, Bk, qk), again for someqk−1 ∈ Q.
How doesM ′ decide whatq1, q2, . . . qk−1 should be? It makes a non-deterministic choice. We include all
possible states fromQ as choices for these intermediate states. We conclude,

∀q1, q2, . . . qk−1 ∈ Q
(∗, c, (p,A, qk)) → (∗, (q0, B1, q1), (q1, B2, q2), . . . (qk−1, Bk−1, qk)) ∈ δ′

5

D. Applying this to our ongoing example

1. We need to modify the machine to have a single accepting state. This is easy. States3 and10 are equivalent.
We’ll replace the arc from sate1 to state3 with an arc to state10.

2. Transitions ofM that push zero or one symbols onto the stack are straightforward. We get:

δ′01 = { (∗, a, (0,⊥, 10)) → (∗, (1,⊥, 10))
(∗, b, (0,⊥, 10)) → (∗, (1,⊥, 10))
(∗, ε, (0,⊥, 10)) → (∗, (4,⊥, 10))
(∗, a, (1,⊥, 10)) → (∗, (2,⊥, 10))
(∗, b, (1,⊥, 10)) → (∗, (2,⊥, 10))
(∗, ε, (1,⊥, 10)) → ε, accept

(∗, a, (2,⊥, 10)) → (∗, (1,⊥, 10))
(∗, b, (2,⊥, 10)) → (∗, (1,⊥, 10))
(∗, a, (4,⊥, 10)) → (∗, (5,⊥, 10))

(∗, a, (4, •, 5)) → (∗, (5, •, 5))
(∗, b, (4,⊥, 10)) → (∗, (7,⊥, 10))

(∗, b, (4, •, 5)) → (∗, (7, •, 5))
(∗, a, (5, •, 5)) → ε

(∗, b, (5,⊥, 10)) → (∗, (9,⊥, 10))
(∗, b, (5, •, 5)) → ε

(∗, b, (6, •, 9)) → (∗, (9, •, 9))
(∗, a, (7,⊥, 10)) → (∗, (9,⊥, 10))

(∗, b, (7, •, 5)) → ε
(∗, a, (7, •, 5)) → ε

(∗, a, (8, •, 9)) → (∗, (9, •, 9))
(∗, ε, (9,⊥, 10)) → ε
(∗, a, (9, •, 9)) → ε
(∗, b, (9, •, 9)) → ε, accept

}

3. Now, let’s look at transitions that push two symbols onto the stack.
a. Consider the transition of the original machine:(4, a,⊥) → (4, • ⊥). If the machine can accept on the input

string, it will eventually transition to either state5 or state7, and the• that is pushed on the stack now will get
popped of then. Thus we will include the transitions:

(∗, a, (4,⊥, 10)) → (∗, (4, •, 5)(5,⊥ 10))
(∗, a, (4,⊥, 10)) → (∗, (4, •, 7)(7,⊥ 10))

in δ′. Note that we don’t have to write all states inQ for the connector between the two stack symbols – we can
determine from the operation of the machine that states5 and7 are the only ones that are needed. This reduces
the amount of stuff we have to put intoδ′ and makes our solution shorter. On the other hand, including all such
intermediate states, for example,

(∗, a, (4,⊥, 10)) → (∗, (4, •, 0)(0,⊥ 10))

also produces a correct machine. This is the approach taken in Kozen to show that every NPDA corresponds to
a CFL. It’s simpler to describe because it doesn’t depend on the details of the particular machine.

6

We’ll write δ′2 to denote the transitions inδ′ that push two symbols onto the stack. Here they are:

δ′2 = { (∗, a, (4,⊥, 10)) → (∗, (4, •, 5)(5,⊥ 10))
(∗, a, (4,⊥, 10)) → (∗, (4, •, 7)(7,⊥ 10))

(∗, a, (4, •, 5)) → (∗, (4, •, 5)(5, •5))
(∗, a, (4, •, 5)) → (∗, (4, •, 5)(5,⊥ 10))

(∗, b, (4,⊥, 10)) → (∗, (4, •, 5)(5,⊥ 10))
(∗, b, (4,⊥, 10)) → (∗, (4, •, 7)(7,⊥ 10))

(∗, a, (4, •, 7)) → (∗, (4, •, 7)(7, •5))
(∗, a, (4, •, 7)) → (∗, (4, •, 7)(7,⊥ 10))

(∗, a, (5,⊥, 10)) → (∗, (6, •, 9)(9,⊥ 10))
(∗, b, (5,⊥, 10)) → (∗, (6, •, 9)(9,⊥ 10))

(∗, a, (6, •, 9)) → (∗, (6, •, 9)(9, •9))
(∗, b, (6, •, 9)) → (∗, (6, •, 9)(9, •9))

(∗, a, (7,⊥, 10)) → (∗, (8, •, 9)(9,⊥ 10))
(∗, b, (7,⊥, 10)) → (∗, (8, •, 9)(9,⊥ 10))

(∗, a, (8, •, 9)) → (∗, (8, •, 9)(9, •9))
(∗, b, (8, •, 9)) → (∗, (8, •, 9)(9, •9))

}

4. Combining these together we get:
δ′ = δ′01 ∪ δ′2

5. Here’s the sequence of configurations that this machine goes through to accept the stringabbaabaa :

step input state stack transition
0 abbaabaa ∗ (0,⊥, 10) (∗, ε, (0,⊥, 10)) → (∗, (4,⊥, 10))
1 abbaabaa ∗ (4,⊥, 10) (∗, a, (4,⊥, 10)) → (∗, (4, •, 7)(7,⊥, 10)
2 bbaabaa ∗ (4, •, 7)(7,⊥, 10) (∗, b, (4, •, 7)) → (∗, (4, •, 7)(7, •, 7))
3 baabaa ∗ (4, •, 7)(7, •, 7)(7,⊥, 10) (∗, b, (4, •, 7)) → (∗, (7, •, 7))
4 aabaa ∗ (7, •, 7)(7, •, 7)(7,⊥, 10) (∗, a, (7, •, 7)) → (∗, ε)
5 abaa ∗ (7, •, 7)(7,⊥, 10) (∗, a, (7, •, 7)) → (∗, ε)
6 baa ∗ (7,⊥, 10) (∗, b, (7,⊥, 10)) → (∗, (8, •, 9)(9,⊥, 10))
7 aa ∗ (8, •, 9)(9,⊥, 10) (∗, a, (8, •, 9)) → (∗, (9, •, 9))
8 a ∗ (9, •, 9)(9,⊥, 10) (∗, a, (9, •, 9)) → (∗, ε)
9 ε ∗ (9,⊥, 10) (∗, a, (9,⊥, 10)) → (∗, ε)

10 ε ∗ ε accept

The entry in the “transition” column shows which transition inδ′ is taken to get to the next configuration.

E. Proving the construction correct.
See Kozen lecture 25.

7

