CpSc 421 Introduction to Theory of Computing

Today(s)’s lectures: From PDAs to CFLs
Reading:

October 19: From PDAs to CFLs
Read:Kozenlecture 25 (oiSipser2.2).

October 21: Deterministic PDAs
Read:Kozenlectures E and F.

October 24: Parsing
Read:Kozenlecture 26 (not irSipse}.

October 26: Midterm: In class

October 28: A Parsing Algorithm
Read:Kozenlecture 27 (not irSipse}.

October 31: Everything else about CFLs

November 2: Turing Machines and Effective Computability
Read:Kozenlecture 28 (oiSipser3.1).

November 4: More Turing Machines
Read:Kozenlecture 29 (oiSipseB.1 again).

November 7: Modified Turing Machines
Read:Kozenlecture 30 (01SipseB.2).

November 9: Diagonalization and the Halting Problem
Read:Kozenlecture 31 (oiSipse#.2).

November 14:Decidability
Read:Kozenlecture 32 (oiSipse#.1).

November 16: Reductions
Read:Kozenlecture 33 (oiSipsechapter 5).

November 18:Godel’'s Theorem
Read:Kozenlecture 38 (o1Sipseb.2).

November 21:Everything else about Turing Machines
November 23&25: Timed Automata
November 28&30: Theorem Proving

December 2:Something Fun

October 19 & 21, 2005

(a’ .)_>€ (a, o)—>oo
(b’ .)_>8O (a, D)_>‘D (b, o)—>oo

. . (b,) —>e 0 8)
->

EZ o; —>e (b .)_>.(a’ o) —>¢
(8 O)—>e0 (b, O)—>0 r)(b o) —>¢

(a, O)—>oo
EB’ -D;::.D (a’ 0 ->0 \/ (e,0) —>¢
| (a O)—>e0)
(e, 0) >0 Eg .ng; .00 (a o) >
U(a’ .)_>8 U(a, 0)—>oo
@ (a O)—>0 (b o) —>e (b, o) —>ee

(a 0) ->N (b, O) —>0O
R €Y (2)

(,00)—>¢

®

Figure 1: A NPDA for{z| ~ Jw. = ww}

l. A non-deterministic automaton with multiple states
A. Figure 1 shows a NPDA that recognizes the langugge {z| ~ Jw. x = ww}.

B. Here are some sample executions:

1. r = aaa
a. This string has an odd length; therefore, it must be in the langage
b. The machine transitions to stateon the first transition. From there on, the machine is in stat¢he prefix
that it has read is of odd length and staiéit's of even length. If the machine finishes reading the string and is
in statel, it makes an epsilon move to st&tand accepts.
C. The sequence of configurations

step input state stack

0 aaa 0 1
1 aa 1 1
2 a 2 L
3 € 1 1L
4 € 3 e, accept

2. x = abbaabaa
a. This string has an even length. Let= abba andz = abaa. Note thatr = yz, |y| = ||, andy # 2. Thus,

T € B.
b. The machine transitions to stat®n the first transition. It reads until it encounters a symba] tifat doesn’t

match the corresponding symbol afIn this case, this is the third symbol of each string. This pair of symbols

proves thay # z. The machine moves to statéto remember thé). The remaining actions in states 7, 8, and
9 count the number of symbols before and after these special ones to verify that they are in the same positions
in y andz. See Kozen, example 23.2 (page 162-163).

c. The sequence of configurations

step input state stack

0 abbaabaa 0 il

1 abbaabaa 4 L

2 bbaabaa 4 e L

3 baabaa 4 ee |

4 aabaa 7 ee |

5 abaa 7 el

6 baa 7 L

7 aa 8 el

8 a 9 el

9 € 9 1
10 € 10 e, accept

Il. An equivalent NPDA with only one state —
The main idea: use the stack to record the state
A. First attempt: replact with @ x T'
1. Let’s try the example wittabbaabaa again
2. The sequence of configurations

step input state stack
0 abbaabaa (0, 1)
1 abbaabaa (4,1)

2 bbaabaa x (4,e)(?,1)

where(0, L) means stack-symbal and state), and« denotes the only state of the one-state machine. Note that
from step 1 to step 2, the original machine poppedff the stack and pushed L onto the stack. Now, what state
should we use to label each of these stack symbols? Obviously, we should lakelithestate4 because that's
where the machine goes. But what ab@tl)? We won't care what its state is until it becomes the top of stack
symbol. What will the state of the original machine be when we get there?

3. To figure out how to label symbols, we’'ll tag each stack symbol from I.B.2.c with the step when it was pushed
onto the stack. Then, when the symbol becomes the top-of-stack one, we’ll know what state the machine is in, and
how the symbol should have been tagged when it was originally put on the stack.

step input state stack

0 abbaabaa 0 1o

1 abbaabaa 4 14

2 bbaabaa 4 o 1o

3 baabaa 4 eze3 1,

4 aabaa 7 e 03 1o

5 abaa 7 o3 1o

6 baa 7 19

7 aa 8 o7 1~

8 a 9 og 17

9 € 9 J_7
10 € 10 e, accept

Now we see that that thé that was pushed onto the stack in the transition from step 1 to step 2 will be exposed on
the top of the stack at step 6 when the original machine is in state 7. Thus we should mark it with state 7.

How does the NPDA know that it should choose 7 as the marker?

We'll use non-determinism. I'll fill-in the details below.

4, Continuing with the tagged version

step input state stack
0 abbaabaa =« (0,1)
1 abbaabaa =« 4,1)
2 Dbbaabaa * (4,0)(7,L)
3 baabaa x (4,e)(7,e)(7,1)
4 aabaa x (7,)(7,e)(7,1)
5 abaa * (7,0)(7,L)
6 baa * (7,1)
7 aa * (8,9)(9, L)
8 a * (9,9)(9,1)
9 € * (9,1)
10 € * €, accept

5. How can we do this with non-determinism?

a. Let § be the transition relation of the original machine, ahte the relation for the modified machine.
b. For each transitiofi(p, ¢, A), (¢, B1 Bz . .. B)) € §, we could include the transitions:

((*,¢,(A,p)), (q1, B1)(g2; B2) - - - (qx, B))

in ¢’ for all possible combinations @f;, g2, ... ¢, € Q.
But, this would let the machine transition aoy state of the original machine for any transition. Not quite what

we want.

c. We can start to solve this problem if we require that= ¢ in the construction above. However, we still have
no guarantee thag, . . . g, correspond to states of the original machine.

B. The solution — keep track of two states in each stack symbol:
e The state that the original machine will be in when this symbol becomes the top-of-stack symbol.
e The state that the original machine will be in when the symbol below this one becomes the top-of-stack symbol.

I'll explain how to do this in just a moment.

1. But, first, let’s try it with our ongoing example.

a. Replacd” with Q@ x I" x @

where a stack symbol ¢pAq) means that the original machine is in statwith A on the top-of-the-stack, and
the original machine will be in statewhen the symbol below this one is exposed.

b. Continuing with the tagged version

step input state stack
0 abbaabaa x (0,L1,10)
1 abbaabaa =x (4, 1,10)
2 bbaabaa x (4,0,7)(7,1,10)
3 baabaa x (4,e,7)(7,e,7)(7,1,10)
4 aabaa x (7,9,7)(7,0,7)(7, 1,10)
5 abaa x (7,0,7)(7,1,10)
6 baa * (7,1,10)
7 aa * (8,9,9)(9,1,10)
8 a * (9,,9)(9, L, 10)
9 € * (9,1,10)
10 € * €, accept

C. The transition relation for the one-state NPDA

1. Let M = (Q,%,T,6,s,L, F) be an NPDA. We can assume tifat= {t¢}, (i.e. M has a single final state), and
that M empties its stack when it enters statdet M’ = ({*},%,Q x ' x Q, ', *, (s, L,t),0) be an NPDA with
one statex, that accepts by empty stack. All we have to do is constfy@nd show that the construction is correct.

2. Constructingy’:

a. (p,c, A) — (q,¢) € 6. This means thal/ popsA off the stack if it's in statep and will go to state;. The
corresponding top-of-stack symbol fdf’ is (p, A, ¢) and we can pop it off the stack if the next input symbol is
ac. In other words

(x,0(p, A, q)) = () € &

Note that we will construct’ to ensure that whatever symbol is uncovered when we(ppg, ¢) off of the
stack is of the formg, B, r) for someB € I" and some €) (or ¢ = ¢ and the stack will be empty).

b. (p,c,A) — (g, B) € J. This means thadl/ readsc, replacesA with B, and moves to statg. Note that
whatever stack symbol was undémwill be underB. Thus,

(*,¢,(p, A;7)) — (*,(¢,B,7)) € ¢

In other words, we go from saying that the machine will reach statken it’s finished the derivation associated
with A to saying that it will reach statewhen it finishes the derivation associated with

C. (p,c, A) — (qo, B1,Ba, ... By) € 6. Now, M’ uses non-determinism to “guess” what stafewill be in at
the end of processing each of thg. Let's say that)/’ had the top-of-stack symb@p, A, ¢;.); then we know
that M will be in stateqy after this transition. Thus, we’ll translaf; to (qo, B1,¢q1) for someq; € Q. But
this means that/ must be ing; whenBs is on the top of the stack, so, we transl&tgto (¢;, B2, ¢2) for some
g2 € @, and so on. Finally, we note that when the derivationprcompletes, we will expose whatever stack
symbol was undefq, A, g.). Thus, we translat®;, to (qx—1, Bk, ¢«), again for somey_1 € Q.
How doesM’ decide whatgy, go, ... q,_1 should be? It makes a non-deterministic choice. We include all
possible states frorfy as choices for these intermediate states. We conclude,

Vqi,q2, - qr-1 € Q
(*vcv (P»A7Qk)) - (*a(q()vBlaql)a(QhBZvQQ)a"'(qkflkaflaqk)) € 5

D. Applying this to our ongoing example

1.

We need to modify the machine to have a single accepting state. This is easy. 3StatkK) are equivalent.

We'll replace the arc from sateto state3 with an arc to staté0.

2.

a.

Transitions ofM that push zero or one symbols onto the stack are straightforward. We get:

S = { (%a,(0,L1,10)) — ((1,L1,10))
(x,b,(0,1,10)) — (x,(1,L1,10))
(%,6,(0,1,10)) — (x,(4,L1,10))
(x,a,(1,1,10)) — (x,(2,1,10))
(,b,(1,1,10)) — (,(2,1,10))
(x,6,(1,1,10)) — ¢ accept
(*,a, (2,L,10)) — (*,(I,L,IO))
(x,b,(2,1,10)) — (x,(1,1,10))
(+,,(4,L,10) — (x(5,L,10))

(x,a,(4,0,5)) — (*,(5,0,5))
(x,b,(4,1,10)) — (x,(7,L1,10))
(*,b,(4,0,5)) — (x,(7,9,5))

(x,a,(5,0,5)) — ¢
(x,b,(5,1,10)) — (x,(9,1,10))
(x,b,(5,0,5)) — ¢
(*,D,(6,0,9)) — (x,(9,0,9))
(,a, (7, 1,10) = (s, (9, 1,10))
(x,b,(7,0,5)) — ¢
(x,a,(7,0,5)) — ¢
(5,2, (8,9,9) — (5(9,9)
(%,6,(9,1,10)) — €
(x,a,(9,0,9)) — ¢
(¥,b,(9,0,9) — ¢ accept

Now, let’s look at transitions that push two symbols onto the stack.
Consider the transition of the original machirié;a, 1) — (4, e). If the machine can accept on the input
string, it will eventually transition to either stafeor state7, and thee that is pushed on the stack now will get
popped of then. Thus we will include the transitions:

(x,a,(4,1,10))
(x,a, (4,1,10))

— (%, (4,9,5)(5, 1 10))

— (%, (4,0,7)(7, 1 10))

in ¢’. Note that we don't have to write all states@hfor the connector between the two stack symbols — we can
determine from the operation of the machine that statmsd7 are the only ones that are needed. This reduces
the amount of stuff we have to put ini6 and makes our solution shorter. On the other hand, including all such
intermediate states, for example,

(x,a,(4,1,10)) — (x,(4,,0)(0,L 10))

also produces a correct machine. This is the approach taken in Kozen to show that every NPDA corresponds to
a CFL. It's simpler to describe because it doesn’'t depend on the details of the particular machine.

We'll write & to denote the transitions iff that push two symbols onto the stack. Here they are:

===
=23
e H -
1010 10 b~

— = e e e«
-~ ~ ® @ -~ ~ @® @
\-\-4747'-'-4\/47
< < TS
Y, @8 ® " c ®
C © ¥ ¥ OO0 v y
L N N AN
* % * %

S— S—

—

I

~N

o

Combining these together we get:

4.

U,

!
01

5/

Here's the sequence of configurations that this machine goes through to accept thatdidagaa :

5.

transition

stack

input state
0 abbaabaa

1 abbaabaa

step

accept

—~
— —

o o

— —

PN -

= =

S =

—~ I~ —

D~ — — o —~
o~ -

e D~ I- e O
470H0H ooaoH o
A~~~ O~ .
¥ —— v v Y Tw ¥
N R N

* X K ¥ * X
— — —
o~~~ ~—~0°
~ e~~~ —~

R O Ny N N e =

4 e e e @ —

SEFF NN N 0SS
(((\/‘\((((/‘\(\

¢ o

P oy ey o oy ey Ty o L T N)
OO OO OO OO oo
R R e TR e T s TR e T e T o B e B e R |

T e e e T T

*

*

bbaabaa

2
3
4
5
6

* X X X

aa
a
€
€

M~ 00 O O
Ll

The entry in the “transition” column shows which transitiondins taken to get to the next configuration.

Proving the construction correct.

See Kozen lecture 25.

E.

