Today's lecture: The Pumping Lemma for CFLs

Announcements:

HW 2 due October 14.

I haven't posted solutions to HW1 yet. I want to make sure that you have several days between seeing the solutions to HW1 and the due date for HW2.

One more office hour:

Tuesdays, 8-9am, my office (ICICS 323). I'll try it for for the next three weeks (i.e. until the midterm). If people show up, I'll continue it.

Reading:

Today: Non-Context-Free Languages Read: *Kozen* lecture 22 or *Sipser* 2.3.

October 17: From CFLs to PDAs Read: *Kozen* lecture 24 (or *Sipser* 2.2).

- October 19: From PDAs to CFLs Read: *Kozen* lecture 25 (or *Sipser* 2.2).
- October 21: Deterministic PDAs Read: *Kozen* lectures E and F.

October 24: Parsing Read: *Kozen* lecture 26 (not in Sipser)

October 26: Midterm: In class.

October 28: A Parsing Algorithm Read: *Kozen* lecture 27 (not in Sipser)

October 31: LALR Parsing Read: TBD

October 14: Non-deterministic, Pushdown Automata Read: *Kozen* lecture 23 or *Sipser* 2.2.

- **I.** Binary trees
 - **A.** How many leaves can a binary tree of depth *d* have?
 - 1. At least d + 1Proof by induction on d.
 - 2. At most 2^d Proof by induction on d.
 - **B.** What is the depth of a tree with *n* leaves?
 - 1. At least $\lceil \log_2(n) \rceil$
 - **2.** At most n 1
 - 3. Both claims follow from the corresponding bounds for number of leaves versus depth.
 - C. Application to CFLs
 - 1. Let A be a CFL.
 - **2.** Let (N, Σ, P, S) be a CFG for A in Chomsky Normal Form (CNF).
 - 3. A parse-tree for a CNF grammar is a binary tree, with degree-1 nodes just above the leaves.
 - **a.** A parse tree with *n* non-terminals has a depth of at least $\lceil \log_2(n) \rceil$.
 - **b.** Let k = |N|.
 - c. Consider a parse tree with 2^{k+1} non-terminals:
 - i. This tree must have at least one non-terminal at depth k + 2.
 - ii. There are at least k + 1 non-terminals on the path from the start-symbol to this terminal.
 - **iii.** At least one non-terminal is repeated.

have

- **d.** This lets us "pump" the string.
- **II.** The pumping lemma for CFLs
 - A. Statement.
 - B. Proof.
 - **C.** Games with a demon.
- **III.** An example: $x | \exists w. x = ww$ is not a CFL
 - A. Proof.
 - **B.** $\{x \mid (\exists w. x = ww)\}$ is a CFL.
 - C. Conclusion: CFLs are not closed under complement.