
CpSc 421 Introduction to Theory of Computing September 30, 2005

Today’s lecture: Everything You Ever Wanted to Know About Finite Automata

Reading:

Today 30: Survey of other topics related to finite automata
Read:Kozenlecture 13

October 3: Context Free Languages and Grammars
Read:Kozenlecture 19 orSipser2.1.

October 5: Balanced Parentheses
Read:Kozenlecture 20 (orSipser2.1).

October 7: Chomsky and Greibach normal forms
Read:Kozenlecture 21 (orSipser2.1).

October 10: Thanksgiving, no lecture

October 12: Non-Context-Free Languages
Read:Kozenlecture 22 orSipser2.3.

October 14: Non-deterministic, Pushdown Automata
Read:Kozenlecture 23 orSipser2.2.

October 17: From CFLs to PDAs
Read:Kozenlecture 24 (orSipser2.2).

October 19: From PDAs to CFLs
Read:Kozenlecture 25 (orSipser2.2).

October 21: Deterministic PDAs
Read:Kozenlectures E and F.

October 24: Parsing
Read:Kozenlecture 26 (not in Sipser)

October 26: Midterm: In class.

October 28: A Parsing Algorithm
Read:Kozenlecture 27 (not in Sipser)

October 31: LALR Parsing
Read: TBD

I. Equivalent Automata

A. How can we tell if two regular languages are the same?

1. Let B1 andB2 be two regular languages.
a. Let M1 = (Q1,Σ, δ1, q0,1, F1) be a DFA that recognizesB1.

1



b. Let M2 = (Q2,Σ, δ2, q0,2, F2) be a DFA that recognizesB2.
c. Note thatB1 andB2 could be described initially as DFAs, NFAs, REs, or Kozen’s pattern – we know how to

convert any of these to DFAs.

2. Let M12 = (Q12,Σ, delta12, q0,12, F12) be the product machine forM1 ×M2.
a. In particular:

Q12 = Q1 ×Q2

δ12((q1, q2), c) = (δ1(q1, c), δ2(q2, c))
q0,12 = (q0,1, q0,2)
F12 = (F1× ∼ F2) ∪ (∼ F1 × F2)

b. The language ofM12

w ∈ L(M12)
⇔ δ̂12(q0,12, w) ∈ F12, def.L(M12)
⇔ (δ̂1(q0,1, w), δ̂1(q0,1, w)) ∈ (F1× ∼ F2) ∪ (∼ F1 × F2), Kozen lemma 4.1 (p. 23), def.F12

⇔
(
(δ̂1(q0,1, w) ∈ F1) ∧ (δ̂1(q0,1, w) ∈∼ F2)

)
∨

(
(δ̂1(q0,1, w) ∈∼ F1) ∧ (δ̂1(q0,1, w) ∈ F2)

)
, set theory

⇔ (δ̂1(q0,1, w) ∈∼ F1) 6= (δ̂1(q0,1, w) ∈ F2), Boolean algebra
⇔ w ∈ B1 	B2,
choice ofM1 andM2

whereB1 	 B2 denotes symmetric set difference –B1 	 B2 = (B1 − B2) ∪ (B2 − B1). In English,M12

accepts a string,w, iff it is in one ofB1 or B2 but not both. Such a string is awitnessthatB1 andB2 are different
languages.

3. B1 andB2 are the same ifB1 	B2 = ∅.
a. To test this, constructM12 as above.
b. Verify thatM12 has no accepting states that are reachable from the initial state.
c. This is a simple graph search problem.

i. The states inQ12 are the vertices of the graph.
ii. There is a directed edge fromq1 to q2 iff there exists some symbolc such thatq2 = δ12(q1, c)

4. Summary: to test ifB1 andB2 are the same language.
a. Construct DFAs forB1 andB2. Call themM1 andM2.
b. Construct a product automatonM12 that accepts iffB1 accepts andB2 doesn’t orB2 accepts andB1 doesn’t.
c. Make sure that no accepting states ofM12 are reachable from the initial state. This can be done with your

favorite traversal algorithm for directed graphs.

B. Applications of equivalence
1. We can specify network protocols as finite automata.

2. The code that implements a protocol can be modeled as a finite automaton.

3. Because the automata for the specification and implementation where derived separately, the correspondence may
not be immediately obvious.

4. We can use the construction described above to determine whether or not the software correctly implements the
protocol.
a. If it doesn’t we find a stringw that is inBspec 	 Bimpl . This is a string that gives a counter-example – it

demonstrates the bug.
b. Sometimes, the specification is not the full, detailed automata, but instead a set of properties that the imple-

mentation should have. We can often model each property with a regular language. Let’s call theseP1, P2,
. . .Pk. Now, to make sure that our implementation has all of the required properties, we checkB ∈ Pi for each
propertyPi that we want to verify, whereB is the automaton modeling our implementation.

5. This approach to verification is called “model checking” and has become an important part of network protocol
design and implementation and hardware verification. There is a growing interest in software model checking,
where properties of software systems are modeled by automata and these kinds of checking methods are applied.

2



C. What is the smallest DFA that accepts a particular language?

a. First, we eliminate unreachable states.
b. Second, we collapse “equivalent” states into a single state

i. Two states of a DFA are equivalent, iff the sets of strings that lead to an accepting state are the same for the
two states.

ii. Let M = (Q,Σ, δ, q0, F ) be a finite automaton. To check if stateqi andqj are equivalent, construct automata

Mi = (Q,Σ, δ, qi, F )
Mj = (Q,Σ, δ, qj , F )

Note thatMi accepts stringw if the path starting at stateqi readingw leads to an accepting state. Likewise for
Mj andqj .
If Mi andMj are equivalent, we say thatqi andqj are equivalent.

iii. We can collapse equivalent states into a single state. No matter how the original automaton got to any of these
states, the suffixes ofw that will lead to an accepting state are the same for all of them. This doesn’t change the
language accepted by the machine.

c. Kozen formalizes all of this in chapter 13.

D. The uniqueness of being small.
Let M1 andM2 be two machines that accept the same language and that have both been minimized by the method
described above.

a. If δ̂1(q1,0, w1) = δ̂1(q1,0, w2) thenδ̂2(q1,0, w1) = δ̂2(q1,0, w1).
b. This means thatM1 andM2 are equivalent to within renaming the states.

II. Other versions of finite automata

A. Automata on trees

B. 2-way DFAs

C. Automata on infinite strings

D. Automata for reactive systems

1. predicates as input symbols

2. timed automata

3. hybrid automata

E. Quantum Automata

III. A pumping lemma example: the prime number language from the Sept. 26 notes.

3


