Today's lecture: Everything You Ever Wanted to Know About Finite Automata

Reading:

Today 30: Survey of other topics related to finite automata Read: Kozen lecture 13

October 3: Context Free Languages and Grammars Read: Kozen lecture 19 or Sipser 2.1.

October 5: Balanced Parentheses
Read: Kozen lecture 20 (or Sipser 2.1).
October 7: Chomsky and Greibach normal forms Read: Kozen lecture 21 (or Sipser 2.1).

October 10: Thanksgiving, no lecture
October 12: Non-Context-Free Languages
Read: Kozen lecture 22 or Sipser 2.3.
October 14: Non-deterministic, Pushdown Automata
Read: Kozen lecture 23 or Sipser 2.2.
October 17: From CFLs to PDAs
Read: Kozen lecture 24 (or Sipser 2.2).
October 19: From PDAs to CFLs
Read: Kozen lecture 25 (or Sipser 2.2).
October 21: Deterministic PDAs
Read: Kozen lectures E and F.
October 24: Parsing
Read: Kozen lecture 26 (not in Sipser)
October 26: Midterm: In class.
October 28: A Parsing Algorithm
Read: Kozen lecture 27 (not in Sipser)
October 31: LALR Parsing
Read: TBD
I. Equivalent Automata
A. How can we tell if two regular languages are the same?

1. Let B_{1} and B_{2} be two regular languages.
a. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0,1}, F_{1}\right)$ be a DFA that recognizes B_{1}.
b. Let $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0,2}, F_{2}\right)$ be a DFA that recognizes B_{2}.
c. Note that B_{1} and B_{2} could be described initially as DFAs, NFAs, REs, or Kozen's pattern - we know how to convert any of these to DFAs.
2. Let $M_{12}=\left(Q_{12}, \Sigma\right.$, delta $\left._{12}, q_{0,12}, F_{12}\right)$ be the product machine for $M_{1} \times M_{2}$.
a. In particular:

$$
\begin{aligned}
Q_{12} & =Q_{1} \times Q_{2} \\
\delta_{12}\left(\left(q_{1}, q_{2}\right), \mathbf{c}\right) & =\left(\delta_{1}\left(q_{1}, \mathbf{c}\right), \delta_{2}\left(q_{2}, \mathbf{c}\right)\right) \\
q_{0,12} & =\left(q_{0,1}, q_{0,2}\right) \\
F_{12} & =\left(F_{1} \times \sim F_{2}\right) \cup\left(\sim F_{1} \times F_{2}\right)
\end{aligned}
$$

b. \quad The language of M_{12}

$$
\begin{array}{ll}
& w \in L\left(M_{12}\right) \\
\Leftrightarrow & \hat{\delta}_{12}\left(q_{0,12}, w\right) \in F_{12}, \\
\Leftrightarrow & \left(\hat{\delta_{1}}\left(q_{0,1}, w\right), \hat{\delta_{1}}\left(q_{0,1}, w\right)\right) \in\left(F_{1} \times \sim F_{2}\right) \cup\left(\sim F_{1} \times F_{2}\right), \\
\Leftrightarrow & \left(\left(\hat{\delta}_{1}\left(q_{0,1}, w\right) \in F_{1}\right) \wedge\left(\hat{\delta_{1}}\left(q_{0,1}, w\right) \in \sim F_{2}\right)\right) \vee\left(\left(\hat{\delta_{1}}\left(q_{0,1}, w\right) \in \sim F_{1}\right) \wedge\left(\hat{\delta_{1}}\left(q_{0,1}, w\right) \in F_{2}\right)\right), \\
\Leftrightarrow & \left(\hat{\delta_{1}}\left(q_{0,1}, w\right) \in \sim F_{1}\right) \neq\left(\hat{\delta_{1}}\left(q_{0,1}, w\right) \in F_{2}\right), \text { Boolean algebra } \\
\Leftrightarrow & w \in B_{1} \ominus B_{2}, \\
\text { choice of } M_{1} \text { and } M_{2} &
\end{array}
$$

where $B_{1} \ominus B_{2}$ denotes symmetric set difference $-B_{1} \ominus B_{2}=\left(B_{1}-B_{2}\right) \cup\left(B_{2}-B_{1}\right)$. In English, M_{12} accepts a string, w, iff it is in one of B_{1} or B_{2} but not both. Such a string is a witness that B_{1} and B_{2} are different languages.
3. $\quad B_{1}$ and B_{2} are the same if $B_{1} \ominus B_{2}=\emptyset$.
a. \quad To test this, construct M_{12} as above.
b. Verify that M_{12} has no accepting states that are reachable from the initial state.
c. This is a simple graph search problem.
i. The states in Q_{12} are the vertices of the graph.
ii. \quad There is a directed edge from q_{1} to q_{2} iff there exists some symbol \mathbf{c} such that $q_{2}=\delta_{12}\left(q_{1}, \mathbf{c}\right)$
4. Summary: to test if B_{1} and B_{2} are the same language.
a. Construct DFAs for B_{1} and B_{2}. Call them M_{1} and M_{2}.
b. Construct a product automaton M_{12} that accepts iff B_{1} accepts and B_{2} doesn't or B_{2} accepts and B_{1} doesn't.
c. Make sure that no accepting states of M_{12} are reachable from the initial state. This can be done with your favorite traversal algorithm for directed graphs.
B. Applications of equivalence

1. We can specify network protocols as finite automata.
2. The code that implements a protocol can be modeled as a finite automaton.
3. Because the automata for the specification and implementation where derived separately, the correspondence may not be immediately obvious.
4. We can use the construction described above to determine whether or not the software correctly implements the protocol.
a. If it doesn't we find a string w that is in $B_{\text {spec }} \ominus B_{i m p l}$. This is a string that gives a counter-example - it demonstrates the bug.
b. Sometimes, the specification is not the full, detailed automata, but instead a set of properties that the implementation should have. We can often model each property with a regular language. Let's call these P_{1}, P_{2}, $\ldots P_{k}$. Now, to make sure that our implementation has all of the required properties, we check $B \in P_{i}$ for each property P_{i} that we want to verify, where B is the automaton modeling our implementation.
5. This approach to verification is called "model checking" and has become an important part of network protocol design and implementation and hardware verification. There is a growing interest in software model checking, where properties of software systems are modeled by automata and these kinds of checking methods are applied.
C. What is the smallest DFA that accepts a particular language?
a. First, we eliminate unreachable states.
b. Second, we collapse "equivalent" states into a single state
i. Two states of a DFA are equivalent, iff the sets of strings that lead to an accepting state are the same for the two states.
ii. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton. To check if state q_{i} and q_{j} are equivalent, construct automata

$$
\begin{aligned}
& M_{i}=\left(Q, \Sigma, \delta, q_{i}, F\right) \\
& M_{j}=\left(Q, \Sigma, \delta, q_{j}, F\right)
\end{aligned}
$$

Note that M_{i} accepts string w if the path starting at state q_{i} reading w leads to an accepting state. Likewise for M_{j} and q_{j}.
If M_{i} and M_{j} are equivalent, we say that q_{i} and q_{j} are equivalent.
iii. We can collapse equivalent states into a single state. No matter how the original automaton got to any of these states, the suffixes of w that will lead to an accepting state are the same for all of them. This doesn't change the language accepted by the machine.
c. Kozen formalizes all of this in chapter 13.
D. The uniqueness of being small.

Let M_{1} and M_{2} be two machines that accept the same language and that have both been minimized by the method described above.
a. If $\hat{\delta}_{1}\left(q_{1,0}, w_{1}\right)=\hat{\delta}_{1}\left(q_{1,0}, w_{2}\right)$ then $\hat{\delta}_{2}\left(q_{1,0}, w_{1}\right)=\hat{\delta}_{2}\left(q_{1,0}, w_{1}\right)$.
b. \quad This means that M_{1} and M_{2} are equivalent to within renaming the states.
II. Other versions of finite automata
A. Automata on trees
B. 2-way DFAs
C. Automata on infinite strings
D. Automata for reactive systems

1. predicates as input symbols
2. timed automata
3. hybrid automata
E. Quantum Automata
III. A pumping lemma example: the prime number language from the Sept. 26 notes.
