
CpSc 421 Introduction to Theory of Computing September 26, 2005

Today’s lecture: Non-Regular Languages and the Pumping Lemma

Reading:

Today: Nonregular Languages
Read:Kozenlecture 12 orSipser1.4.

September 28:More examples of the pumping Lemma
Read:Kozenlecture 13 orSipser1.4.

September 30:Survey of other topics related to finite automata

October 3: Context Free Languages and Grammars
Read:Kozenlecture 19 orSipser2.1.

October 5: Balanced Parentheses
Read:Kozenlecture 20 (orSipser2.1).

October 7: Chomsky and Greibach normal forms
Read:Kozenlecture 21 (orSipser2.1).

October 10: Thanksgiving, no lecture

October 12: Non-Context-Free Languages
Read:Kozenlecture 22 orSipser2.3.

October 14: Non-deterministic, Pushdown Automata
Read:Kozenlecture 23 orSipser2.2.

October 17: From CFLs to PDAs
Read:Kozenlecture 24 (orSipser2.2).

October 19: From PDAs to CFLs
Read:Kozenlecture 25 (orSipser2.2).

October 21: Deterministic PDAs
Read:Kozenlectures E and F.

October 24: Parsing
Read:Kozenlecture 26 (not in Sipser)

October 26: Midterm: In class.

October 28: A Parsing Algorithm
Read:Kozenlecture 27 (not in Sipser)

October 31: LALR Parsing
Read: TBD

1



I. A non-regular language:B = {w ∈ Σ∗|∃n ∈ Z+.w = anbn}
A. We’ll prove this by contradiction – assume thatB is regular.

B. Then, there exists a DFAM , that accepts languageB.
1. Let M = (Q,Σ, δ, q0, F ), and letk = |Q|.
2. Let

w = akbk

p(i) = δ̂(q0, a
i)

Intuitively, w is a string inB that is long enough to ensure thatM will run out of states when processing it. The
functionp(i) gives the state thatM reaches after processing the firsti a’s of w:

i: 0 1 2 3 . . . k
input: a a a a . . . a

M ’s state: p(0) p(1) p(2) p(3) . . . p(k + 1)

3. Pigeon holep(i).
The range ofp is Q which has onlyk distinct values. There arek + 1 distinct values fori in 0 . . . k. Therefore, we
can find distincti andj in 0 . . . k such thatp(i) = p(j). For those who like to see this written as a mathematical
formula:

∃i, j ∈ [0 . . . k]. (i 6= j) ∧ (p(i) = p(j))

Thus, we can choosei andj such that0 ≤ i < j ≤ k andp(i) = p(j).
4. Let d = j − i.

Becausei < j, d > 0. Becausep(i) = p(j), we concludêδ(p(i), ad) = p(i). More generally, this periodicity holds
for any statep(g) with g ≥ i:

∀g ≥ i. ∀m ∈ Z+. p(g + md) = p(g)

5. In particular,p(k + d) = p(k). Let w′ = ak+dbk.

δ̂(q0, w
′)

= δ̂(q0, a
k+dbk) def.w′

= δ̂(δ̂(q0, a
k+d), bk), prop. ofδ̂

= δ̂(p(k + d), bk), def.p(i)
= δ̂(p(k), bk), shown above
= δ̂(δ̂(q0, a

k), bk), def.p(i)
= δ̂(q0, a

kbk), prop. ofδ̂
∈ F assumption thatM acceptsB

But this means thatM acceptsw′ andw′ 6∈ B. A contradiction.

C. B is not regular, because assuming that it is leads to a contradiction.

II. The pumping lemma.

A. A generalization of the example given above.
Let B be a language. IfB is regular, then it is recognized by some DFAM = (Q,Σ, δ, q0, F ). Letk = |Q|. Letw ∈ B
be a string with|B| > k. Then for any substring ofw with length greater thank, there must be some state that is visited
two or more times. We can use this to create other strings that must be inB.

B. ThePumping Lemma:
Let B be a regular language. There exists an integerk, such that for any stringsx, y, andz with xyz ∈ B and|y| ≥ k,
there exists stringsu, v, andw with uvw = y such that for everym ≥ 0, xuvmwz ∈ B.

Our proof is by contradiction and is a generalization of our proof thatanbn is not regular.
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1. Proof:
a. If B is regular, then there is a DFAM = (Q,Σ, δ, q0, F ) that accepts a string iff it is inB. Let k = |Q|. Let

x, y, andz be strings such thatxyz ∈ B and|y| ≥ k.
b. For0 ≤ i ≤ |y|, let s(i) be the firsti symbols ofy. Let

p(i) = δ̂(q0, x · s(i))

c. Because|y| ≥ k, there are at leastk + 1 possible values fori, but onlyk possible values forp(i). Choosei, j
with 0 ≤ i < j ≤ |y| such thatp(i) = p(j).

d. Now, we breaky into three pieces,u, v, andw. Let u = s(i). Choosev such thats(j) = s(i) · v, and choose
w such thaty = uvw. By these choices, we have

1. δ̂(q0, xu) = p(i), def.u andp(i)
2. δ̂(p(i), v) = p(i), def.v andp(j) = p(i)
3. δ̂(p(i), vm) = δ̂(p(i), v) above, and induction onm
4. δ̂(q0, xuvm) = p(i), (1) and (3)
5. δ̂(q0, xyz) = δ̂(q0, xuvwz) y = uvw

6. = δ̂(δ̂(δ̂(q0, xu), v), wz), prop. ofδ̂
7. = δ̂(δ̂(p(i), v), wz), (1)
8. = δ̂(δ̂(p(i), vm), wz), (3)
9. = δ̂(δ̂(δ̂(q0, xu), vm), wz), (1)

10. = δ̂(xuvmwz), prop. ofδ̂
11. δ̂(xyz) ∈ F, xyz ∈ B,L(M) = B

12. δ̂(xuvmwz) ∈ F, δ̂(xuvmwz) = δ̂(xyz), (5)-(10)
13. xuvmwz ∈ B, L(M) = B, note thatm is arbitrary

2. Interpretation: The pumping lemma says that every regular languageB has an associated integer,k, such that for
any strings ∈ B, any substring ofs of lengthk or greater has a substring that can be repeated as many times as you
like (including 0) and the resulting string is still in the language.
a. Adding extra copies of this string to the originals is the “pumping” part of the pumping lemma.
b. The bit about dividings into x, y, andz says that this pumping property can be applied to any substring that

you like, as long as it’s long enough.

C. The contrapositive of the pumping lemma:
Let B be a language.If for any integerk, you can find a stringxyz ∈ B with |y| ≥ k such that there is no way to
chooseu, v, andw with y = uvw so thatxuvmwz ∈ B for anym > 0, thenB is not regular.

This contrapositive formulation provides a very useful way to prove that a language is not regular. Kozen views it as
a game. You want to prove that a language is not regular, the “demon” (i.e. a hypothetical adversary) plays the other
side of the game. If you can win no matter what moves the demon makes, then the language is not regular. Here are the
“rules” of the game:
1. The demon chosesk.

2. You pick x, y, andz such thatxyz ∈ B andy ≥ k. Your goal is to choosey so that there is no way to make it
any shorter and still get a string inB or there is no way to replicate some piece of it and still get a string inB. You
choosex andz in such a way as to force the demon to work on a part of the string that you know can’t be altered.

3. The demon picksu, v, andw such thatuvw = y.

4. You pickm ≥ 0 such thatxuvmwz 6∈ B.
This kind of game perspective is common in applications of formal automata to verification problems. In this case, the
automaton is the model of all possible system behaviours. The demon is trying to make the system fail. For example,
the demon can decide the outcomes of non-deterministic choices to try to make something bad happen. For example,
the demon could choose the inputs that will be applied to the system. In a concurrent system where there are several
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computers working at the same time, the demon may choose an ordering of events that would cause the system to fail.
The verification task is to show that the system works no matter what the demon chooses.

III. One more example: letΣ = {a}; let B = {w ∈ Σ∗|prime(|a|)}, whereprime(n) is true iff n is a prime number. We’ll
prove thatB is not regular using the contrapositive (game with a demon) form of the pumping lemma.

A. Demon’s choice:k
Let k be the pumping lemma constant forB.

B. Our choice:x, y, andx

1. Let p be the smallest prime that is greater than(k + 1)! + 1. Such ap exists because there are an infinite number
of primes.

2. Note that forn ∈ [(k + 1)! + 2 . . . (k + 1)! + k + 1], Let r = n− (k + 1)!. Because2 ≤ r ≤ k + 1, (k + 1)!/r
is an integer. Accordingly,r, and1 + (k + 1)!/r are integer factors ofn. Thus,n is composite,

3. It follows from III.B.2 thatp > (k + 1)! + (k + 1).
4. We choosex = a(k+1)!+2, y = ap−|x|, andz = ε.

Becausep > (k + 1)! + (k + 1), |y| ≥ k. Note thatxyz = ap ∈ B.

C. Demon’s choice:u, v, andw
By the assumption thatB is regular, there exist stringsu, v, andw such thaty = uvw, |v| > 0, and for allm ≥ 0,
xuvmwz ∈ B (the pumping lemma).

D. Our choice:m = 0. Because|x| = (k + 1)! + 2, |xuwz| ≥ (k + 1)! + 2. Likewise, because|v| > 0, |xuwz| < p.
But, we’vep is the smallest prime greater than(k + 1)! + 1. Thus|xuwz| is composite, andxuwz 6∈ B.

Because we have a winning strategy no matter what the demon chooses, we have shown thatB is not regular.
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