
CpSc 421 Introduction to Theory of Computing September 21, 2005

Today’s lecture: From Patterns to NFAs

Reading:

Today: From Regular Expressions to Finite Automata
Read:Kozenlecture 8 orSipser1.3.

September 23:From Finite Automata to Regular Expressions
Read:Kozenlecture 9 orSipser1.3.

September 26:Nonregular Languages
Read:Kozenlecture 12 orSipser1.4.

September 28:More examples of the pumping Lemma
Read:Kozenlecture 13 orSipser1.4.

September 30:Survey of other topics related to finite automata

October 3: Context Free Languages and Grammars
Read:Kozenlecture 19 orSipser2.1.

October 5: Balanced Parentheses
Read:Kozenlecture 20 (orSipser2.1).

October 7: Chomsky and Greibach normal forms
Read:Kozenlecture 21 (orSipser2.1).

October 10: Thanksgiving, no lecture

October 12: Non-Context-Free Languages
Read:Kozenlecture 22 orSipser2.3.

October 14: Non-deterministic, Pushdown Automata
Read:Kozenlecture 23 orSipser2.2.

October 17: From CFLs to PDAs
Read:Kozenlecture 24 (orSipser2.2).

October 19: From PDAs to CFLs
Read:Kozenlecture 25 (orSipser2.2).

October 21: Deterministic PDAs
Read:Kozenlectures E and F.

October 26: Midterm: In class.

1

I. The big picture

A. What we want to show:
Patterns, regular expressions, NFAs with and withoutε transitions, and DFAs are all equivalent in terms of the
languages that they can recognize.

B. What we have shown:
DFAs and NFAs with and withoutε transitions are equivalent.
1. Every DFA is an NFA.

2. For every NFA withoutε transitions, there is a DFA that accepts the same language:
a. Power set construction.
b. Let Q be the set of states of the NFA
c. We construct a DFA whose set of states is2Q.
d. Every state of the DFA represents a set of states (possibly empty) of the NFA.
e. This allows the DFA to simulate the NFA.
f. Because|Q| is finite, so is

∣∣2Q
∣∣ = 2|Q|.

3. Every NFA withoutε transitions is an NFA whereε transitions are allowed (trivial case).

4. For every NFA withε transitions, there is an NFA withoutε transitions that accepts the same lan-
guage:
a. If q

ε→ q′, then for each arc,p
c→ q, add an arcp

c→ q′ (if not already present), and delete the arc
q

ε→ q′.
b. The resulting machine accepts the same language as the original and has one lessε transition.
c. Because|Q| is finite, the number ofε transitions is finite. Thus, a finite number of applications of

this transformation leads to an NFA with noε transitions that accepts the same language as the original
NFA. (Note: this is a proof by induction on the number ofε transitions in the original NFA).

C. What we need to show:
1. For every pattern, there is a regular expression for the same language.

We’ll prove this today.

2. For every regular expression, there is a pattern that recognizes the same language.
This is trivial because regular expressions are a subset of Kozen’s patterns. We won’t address this one any
further.

3. For every pattern, there is an NFA withε transitions that recognizes the same language.
We’ll prove this today.

4. For every NFA, there is a regular expression that recognizes the same language. We’ll prove this on
Friday.

II. From patterns to NFAs

A. For any pattern,α, we construct an NFA that recognizesL(α) based on the structure ofα. This provides a
proof by induction.
1. Base cases:a ∈ Σ, ε, ∅, ε:

Each of these can be implemented directly by an NFA as shown in figure 1.
a. a ∈ Σ

Let Ma = ({q0, q1, q2},Σ, δa, q0, {q1}) where

δa(q0, a) = q1

δa(q0, b) = q2, b ∈ Σ− {a}
δa(q1, b) = q2, b ∈ Σ
δa(q2, b) = q2, b ∈ Σ

The proof thatL(Ma) = L(a) is straightforward.

2

a

a

#

#

ε

#

@

Figure 1: Automata for base cases of proof that every pattern can be realized by an NFA

b. The other cases are similar

2. Induction step:
a. β + γ: see figure 2.
b. β ∩ γ: NFAs are closed under intersection. In particular, we can construct DFAs corresponding to

the NFAs forβ andγ and use the product construction to produce a DFA that recognizesL(β ∩ γ).
Because every DFA is an NFA, this completes the construction.

c. βγ: See figure 3.
d. ∼ β: NFAs are closed under complement.
e. β∗: See figure 4.
f. β+: Note thatβ+ = ββ∗. Now, use the constructions for concatenation and asteration.

3. For every construction of a pattern, we can construct an NFA that recognizes the same language. Thus,
every language that can be recognized by a pattern can be recognized by an NFA.

III. Kozen’s questions:

A. How hard is it to determine if a given string,x, matches a given pattern,α?

B. Is every language represented by some pattern? Consider

B = {w ∈ {a, b}∗|∃n ∈ Z. w = anbn}

C. When are two patterns,α andβ equivalent, i.e.L(α) = L(β)?

D. Which operators are redundant?

1. Givena ∈ Σ, +, ·, ∗, andφ,

2. we can construct#, @, ε, ∩, and∼
a. # = c1 + c2 + . . . + ck

Wherec1, c2, . . . ,ck are the elements ofΣ. BecauseΣ is finite, the expression for# is finite as well.
b. @ = #∗

c. ε = φ∗

Note that for any pattern,α, α0 matches the empty string.
d. ∼

As Kozen points out, the proof here is a bit more involved. I’ll sketch it in Friday’s lecture.
e. β ∩ γ =∼ (∼ β∪ ∼ γ)

3

β

γS F

ε

ε

ε
ε

ε

ε

ε

ε

ε

Figure 2: NFA construction forβ + γ

β

S

γ

F

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

Figure 3: NFA construction forβγ

β

F
S

ε

ε
ε

ε

ε

ε

Figure 4: NFA construction forβ∗

4

