Today's lecture: From Patterns to NFAs

Reading:

- **Today:** From Regular Expressions to Finite Automata Read: *Kozen* lecture 8 or *Sipser* 1.3.
- September 23: From Finite Automata to Regular Expressions Read: *Kozen* lecture 9 or *Sipser* 1.3.
- September 26: Nonregular Languages Read: *Kozen* lecture 12 or *Sipser* 1.4.
- September 28: More examples of the pumping Lemma Read: *Kozen* lecture 13 or *Sipser* 1.4.
- September 30: Survey of other topics related to finite automata
- October 3: Context Free Languages and Grammars Read: *Kozen* lecture 19 or *Sipser* 2.1.
- October 5: Balanced Parentheses Read: *Kozen* lecture 20 (or *Sipser* 2.1).
- October 7: Chomsky and Greibach normal forms Read: *Kozen* lecture 21 (or *Sipser* 2.1).
- October 10: Thanksgiving, no lecture
- October 12: Non-Context-Free Languages Read: *Kozen* lecture 22 or *Sipser* 2.3.
- October 14: Non-deterministic, Pushdown Automata Read: *Kozen* lecture 23 or *Sipser* 2.2.
- October 17: From CFLs to PDAs Read: *Kozen* lecture 24 (or *Sipser* 2.2).
- October 19: From PDAs to CFLs Read: *Kozen* lecture 25 (or *Sipser* 2.2).
- October 21: Deterministic PDAs Read: *Kozen* lectures E and F.

October 26: Midterm: In class.

I. The big picture

A. What we want to show:

Patterns, regular expressions, NFAs with and without ϵ transitions, and DFAs are all equivalent in terms of the languages that they can recognize.

B. What we have shown:

DFAs and NFAs with and without ϵ transitions are equivalent.

- **1.** Every DFA is an NFA.
- 2. For every NFA without ϵ transitions, there is a DFA that accepts the same language:
 - **a.** Power set construction.
 - **b.** Let Q be the set of states of the NFA
 - **c.** We construct a DFA whose set of states is 2^Q .
 - **d.** Every state of the DFA represents a set of states (possibly empty) of the NFA.
 - **e.** This allows the DFA to simulate the NFA.
 - **f.** Because |Q| is finite, so is $|2^Q| = 2^{|Q|}$.
- 3. Every NFA without ϵ transitions is an NFA where ϵ transitions are allowed (trivial case).
- 4. For every NFA with ϵ transitions, there is an NFA without ϵ transitions that accepts the same language:
 - **a.** If $q \stackrel{\epsilon}{\to} q'$, then for each arc, $p \stackrel{c}{\to} q$, add an arc $p \stackrel{c}{\to} q'$ (if not already present), and delete the arc $q \stackrel{\epsilon}{\to} q'$.
 - **b.** The resulting machine accepts the same language as the original and has one less ϵ transition.
 - c. Because |Q| is finite, the number of ϵ transitions is finite. Thus, a finite number of applications of this transformation leads to an NFA with no ϵ transitions that accepts the same language as the original NFA. (Note: this is a proof by induction on the number of ϵ transitions in the original NFA).
- **C.** What we need to show:
 - **1.** For every pattern, there is a regular expression for the same language. We'll prove this today.
 - 2. For every regular expression, there is a pattern that recognizes the same language. This is trivial because regular expressions are a subset of Kozen's patterns. We won't address this one any further.
 - 3. For every pattern, there is an NFA with ϵ transitions that recognizes the same language. We'll prove this today.
 - **4.** For every NFA, there is a regular expression that recognizes the same language. We'll prove this on Friday.

II. From patterns to NFAs

- A. For any pattern, α , we construct an NFA that recognizes $L(\alpha)$ based on the structure of α . This provides a proof by induction.
 - **1.** Base cases: $a \in \Sigma$, ϵ , \emptyset , ϵ :

Each of these can be implemented directly by an NFA as shown in figure 1.

- a. $a \in \Sigma$
 - Let $M_a = (\{q_0, q_1, q_2\}, \Sigma, \delta_a, q_0, \{q_1\})$ where

$$\begin{array}{rcl} \delta_a(q_0, \mathsf{a}) &=& q_1\\ \delta_a(q_0, \mathsf{b}) &=& q_2, \quad \mathsf{b} \in \Sigma - \{a\}\\ \delta_a(q_1, \mathsf{b}) &=& q_2, \quad \mathsf{b} \in \Sigma\\ \delta_a(q_2, \mathsf{b}) &=& q_2, \quad \mathsf{b} \in \Sigma \end{array}$$

The proof that $L(M_a) = L(a)$ is straightforward.

Figure 1: Automata for base cases of proof that every pattern can be realized by an NFA

- **b.** The other cases are similar
- **2.** Induction step:
 - **a.** $\beta + \gamma$: see figure 2.
 - **b.** $\beta \cap \gamma$: NFAs are closed under intersection. In particular, we can construct DFAs corresponding to the NFAs for β and γ and use the product construction to produce a DFA that recognizes $L(\beta \cap \gamma)$. Because every DFA is an NFA, this completes the construction.
 - **c.** $\beta\gamma$: See figure 3.
 - **d.** $\sim \beta$: NFAs are closed under complement.
 - e. β^* : See figure 4.
 - **f.** β^+ : Note that $\beta^+ = \beta \beta^*$. Now, use the constructions for concatenation and asteration.
- **3.** For every construction of a pattern, we can construct an NFA that recognizes the same language. Thus, every language that can be recognized by a pattern can be recognized by an NFA.
- **III.** Kozen's questions:
 - A. How hard is it to determine if a given string, x, matches a given pattern, α ?
 - **B.** Is every language represented by some pattern? Consider

$$B = \{ w \in \{ \mathsf{a}, \mathsf{b} \}^* | \exists n \in \mathbb{Z}. \ w = a^n b^n \}$$

- **C.** When are two patterns, α and β equivalent, i.e. $L(\alpha) = L(\beta)$?
- **D.** Which operators are redundant?
 - 1. Given $a \in \Sigma, +, \cdot, *$, and ϕ ,
 - 2. we can construct #, $@, \epsilon, \cap$, and \sim
 - **a.** $\# = c_1 + c_2 + \ldots + c_k$

Where c_1, c_2, \ldots, c_k are the elements of Σ . Because Σ is finite, the expression for # is finite as well.

b. $@ = #^*$

 \sim

c. $\epsilon = \phi^*$

Note that for any pattern, α , α^0 matches the empty string.

d.

As Kozen points out, the proof here is a bit more involved. I'll sketch it in Friday's lecture.

 $e. \qquad \beta \cap \gamma = \sim (\sim \beta \cup \sim \gamma)$

Figure 2: NFA construction for $\beta+\gamma$

Figure 3: NFA construction for $\beta\gamma$

Figure 4: NFA construction for β^*