## Today's lecture: From Patterns to NFAs

## Reading:

Today: From Regular Expressions to Finite Automata
Read: Kozen lecture 8 or Sipser 1.3.
September 23: From Finite Automata to Regular Expressions
Read: Kozen lecture 9 or Sipser 1.3.
September 26: Nonregular Languages
Read: Kozen lecture 12 or Sipser 1.4.
September 28: More examples of the pumping Lemma
Read: Kozen lecture 13 or Sipser 1.4.
September 30: Survey of other topics related to finite automata

October 3: Context Free Languages and Grammars
Read: Kozen lecture 19 or Sipser 2.1.
October 5: Balanced Parentheses
Read: Kozen lecture 20 (or Sipser 2.1).
October 7: Chomsky and Greibach normal forms
Read: Kozen lecture 21 (or Sipser 2.1).
October 10: Thanksgiving, no lecture
October 12: Non-Context-Free Languages
Read: Kozen lecture 22 or Sipser 2.3.
October 14: Non-deterministic, Pushdown Automata
Read: Kozen lecture 23 or Sipser 2.2.
October 17: From CFLs to PDAs
Read: Kozen lecture 24 (or Sipser 2.2).
October 19: From PDAs to CFLs
Read: Kozen lecture 25 (or Sipser 2.2).
October 21: Deterministic PDAs
Read: Kozen lectures E and F.
October 26: Midterm: In class.
I. The big picture
A. What we want to show:

Patterns, regular expressions, NFAs with and without $\epsilon$ transitions, and DFAs are all equivalent in terms of the languages that they can recognize.
B. What we have shown:

DFAs and NFAs with and without $\epsilon$ transitions are equivalent.

1. Every DFA is an NFA.
2. For every NFA without $\epsilon$ transitions, there is a DFA that accepts the same language:
a. Power set construction.
b. Let $Q$ be the set of states of the NFA
c. We construct a DFA whose set of states is $2^{Q}$.
d. Every state of the DFA represents a set of states (possibly empty) of the NFA.
e. This allows the DFA to simulate the NFA.
f. Because $|Q|$ is finite, so is $\left|2^{Q}\right|=2^{|Q|}$.
3. Every NFA without $\epsilon$ transitions is an NFA where $\epsilon$ transitions are allowed (trivial case).
4. For every NFA with $\epsilon$ transitions, there is an NFA without $\epsilon$ transitions that accepts the same language:
a. If $q \xrightarrow{\epsilon} q^{\prime}$, then for each arc, $p \xrightarrow{c} q$, add an arc $p \xrightarrow{c} q^{\prime}$ (if not already present), and delete the arc $q \xrightarrow{\epsilon} q^{\prime}$.
b. The resulting machine accepts the same language as the original and has one less $\epsilon$ transition.
c. Because $|Q|$ is finite, the number of $\epsilon$ transitions is finite. Thus, a finite number of applications of this transformation leads to an NFA with no $\epsilon$ transitions that accepts the same language as the original NFA. (Note: this is a proof by induction on the number of $\epsilon$ transitions in the original NFA).
C. What we need to show:
5. For every pattern, there is a regular expression for the same language.

We'll prove this today.
2. For every regular expression, there is a pattern that recognizes the same language.

This is trivial because regular expressions are a subset of Kozen's patterns. We won't address this one any further.
3. For every pattern, there is an NFA with $\epsilon$ transitions that recognizes the same language. We'll prove this today.
4. For every NFA, there is a regular expression that recognizes the same language. We'll prove this on Friday.

## II. From patterns to NFAs

A. For any pattern, $\alpha$, we construct an NFA that recognizes $L(\alpha)$ based on the structure of $\alpha$. This provides a proof by induction.

1. Base cases: $a \in \Sigma, \boldsymbol{\epsilon}, \emptyset, \boldsymbol{\epsilon}$ :

Each of these can be implemented directly by an NFA as shown in figure 1.
a. $\quad a \in \Sigma$

Let $M_{a}=\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma, \delta_{a}, q_{0},\left\{q_{1}\right\}\right)$ where

$$
\begin{aligned}
\delta_{a}\left(q_{0}, \mathbf{a}\right) & =q_{1} \\
\delta_{a}\left(q_{0}, \mathbf{b}\right) & =q_{2}, \quad \mathbf{b} \in \Sigma-\{a\} \\
\delta_{a}\left(q_{1}, \mathbf{b}\right) & =q_{2}, \quad \mathbf{b} \in \Sigma \\
\delta_{a}\left(q_{2}, \mathbf{b}\right) & =q_{2}, \quad \mathbf{b} \in \Sigma
\end{aligned}
$$

The proof that $L\left(M_{a}\right)=L(a)$ is straightforward.


Figure 1: Automata for base cases of proof that every pattern can be realized by an NFA
b. The other cases are similar
2. Induction step:
a. $\quad \beta+\gamma$ : see figure 2 .
b. $\quad \beta \cap \gamma$ : NFAs are closed under intersection. In particular, we can construct DFAs corresponding to the NFAs for $\beta$ and $\gamma$ and use the product construction to produce a DFA that recognizes $L(\beta \cap \gamma)$. Because every DFA is an NFA, this completes the construction.
c. $\quad \beta \gamma$ : See figure 3.
d. $\quad \sim \beta$ : NFAs are closed under complement.
e. $\quad \beta^{*}$ : See figure 4 .
f. $\quad \beta^{+}$: Note that $\beta^{+}=\beta \beta^{*}$. Now, use the constructions for concatenation and asteration.
3. For every construction of a pattern, we can construct an NFA that recognizes the same language. Thus, every language that can be recognized by a pattern can be recognized by an NFA.
III. Kozen's questions:
A. How hard is it to determine if a given string, $x$, matches a given pattern, $\alpha$ ?
B. Is every language represented by some pattern? Consider

$$
B=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*} \mid \exists n \in \mathbb{Z} . w=a^{n} b^{n}\right\}
$$

C. When are two patterns, $\alpha$ and $\beta$ equivalent, i.e. $L(\alpha)=L(\beta)$ ?
D. Which operators are redundant?

1. Given $a \in \Sigma,+, \cdot,{ }^{*}$, and $\phi$,
2. we can construct \#, @, $\boldsymbol{\epsilon}, \cap$, and $\sim$
a. $\quad \#=c_{1}+c_{2}+\ldots+c_{k}$

Where $c_{1}, c_{2}, \ldots, c_{k}$ are the elements of $\Sigma$. Because $\Sigma$ is finite, the expression for $\#$ is finite as well.
b. $@=\#^{*}$
c. $\quad \epsilon=\phi^{*}$

Note that for any pattern, $\alpha, \alpha^{0}$ matches the empty string.
d. $\sim$

As Kozen points out, the proof here is a bit more involved. I'll sketch it in Friday's lecture.
e. $\quad \beta \cap \gamma=\sim(\sim \beta \cup \sim \gamma)$


Figure 2: NFA construction for $\beta+\gamma$


Figure 3: NFA construction for $\beta \gamma$


Figure 4: NFA construction for $\beta^{*}$

