
CpSc 421 Introduction to Theory of Computing September 14, 2005

Today’s lecture: Regular Languages

I. Finite Automata with Multiple Input Tapes
II. Non-deterministic Finite AutomataIII. Concatenation and Asteration of Languages

Reading:

Today: Non-Determinism – Read:Kozenlecture 5 orSipser1.2.

September 16:Equivalence of DFAs and NFAs – Read:Kozenlecture 6 (orSipser1.2. as before).

September 19:Regular Expressions – Read:Kozenlectures 7 & 8 orSipser1.3.

September 21:Equivalence of Regular expressions and Finite Automata Read:Kozenlecture 9 (orSipser1.3. as
before).

September 23:Nonregular Languages – Read:Kozenlecture 12 orSipser1.4.

September 26:More examples of the pumping Lemma Read:Kozenlecture 13 orSipser1.4.

September 28:Applications of finite automata

September 30:More applications

October 26: Midterm: In class.

I. Finite Automata with Multiple Input Tapes

A. Historical note:
The input to an automaton is often referred to as an “input tape.” This is because mechanical tabulation
machines that used punched cards or paper tapes for input were in use when the discipline of automata theory
was first developed. The idea of a “tape” seemed to go better with strings than punched cards; so, the earlier
researchers refered to the input as being on a “tape.” The terminology stuck, and we still call it a “tape” today.

B. What can we do with two input tapes?

1. We can formalize their definition:
a. Let Σ1 andΣ2 denote the alphabets of the two tapes.
b. Let Q denote the finite set of machine states as before. Letq0 be the initial state, andF be the set of

accepting states as before.
c. At each step, the automaton reads a symbol from each tape, and makes a transition. Thus,δ :

Q× Σ1 × Σ2 → Q.

2. Does the second tape give us any new kinds of languages?
a. No.
b. We could define an ordinary finite automaton whose input alphabetΣ = Σ1 × Σ2.
c. δ, Q, q0, andF remain the same.
d. This produces a machine that recognizes the same language as the two-input-tape machine
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Figure 1: A Two-Input-Tape Finite Automaton

3. We do get something “interesting” if we quantify over the second tape.
a. Let M2 be a two-input-tape machine as described above.

i.. We’ll write L(M2) to denote the two-input-tape language accepted byM2.
ii.. For two strings,s1 ands2 with |s1| = |s2|, defineweave(s1, s2) as shown below:

weave(ε, ε) = ε
weave(x1c1, x2c2) = weave(x1, x2)(c1, c2), wherec1 andc2 are indi-

vidual symbols

b. Let L∃(M2) =
{

s1 ∈ Σ∗
1

∣∣∣ ∃s2 ∈ Σ|s1|
2 . weave(s1, s2) ∈ L(M2)

}
4. An example:

a. Figure 1 shows a state-transition diagram for a two-input-tape finite automaton where:

Σ1 = {a, b}
Σ2 = {0, 1, 2}

b. This automaton recognizes strings where the last ‘b’ is followed by n ‘a’s wheren is any multiple
of 3, 4, or 5.

c. This language can be recognized by a deterministic finite automaton (that’s the kind we’ve studied
so far), but the smallest such deterministic automaton has 61 states. This machine only has 15.

d. Consider what the machine does on inputs1 = “ababaaaaaaaa ”. The machine accepts, with
string “000010000000 ” as the existential witness fors2.

0
(a,0)−→ 0

(b,0)−→ 0
(a,0)−→ 0

(b,1)−→

1
(a,0)−→ 4a

(a,0)−→ 4b
(a,0)−→ 4c

(a,0)−→

4d
(a,0)−→ 4a

(a,0)−→ 4b
(a,0)−→ 4c

(a,0)−→

4d
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Figure 2: An NFA that recognizes “abc ’
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Figure 3: A Simplified Version of the Automaton from figure 1

e. Note that for some states (for example, state1 in figure 1), the existentially quantified tape,s2, guides
the machine to the right state so that it will accept the string. You can think ofs2 as a collection of hints
that the machine uses to find its way through a maze from the start state to an accepting state. If there
is any string fors2 for which machineM acceptss1, then we say thats1 ∈ L∃(M).

II. Non-Deterministic Finite Automata (NFAs)

A. Simplifying Existentially Quantified, Two-Input-Tape, Finite Automata

1. Becauses2 is existentially quantified, it doesn’t really matter which symbols inΣ2 are used for which
labels. All that matters is for each stateq ∈ Q and each symbolc ∈ Σ1, what states are reachable fromq
with inputc and some symbol fromΣ2 for s2. So, we drop the labels for thes2 string.

2. The machine will find a path to an accepting state if one exists. Thus, we don’t need to show transitions
to terminally non-accepting states (i.e. stateG in figure 1). For example, figure 2 shows a transition diagram
for an automaton that recognizes the language{abc }.

3. Figure 3 shows a transition diagram for the machine from figure 1 with these two simplifications.

B. NFAs formally defined
A NFA is a 5-tuple,(Q,Σ,∆, Q0, F ) where

1. The ingredients of an NFA
a. Q is the set of states.
b. Σ is the input alphabet.
c. Each state has multiple possible successors. Thus, we have a state transitionrelation instead of the

function that we had for a DFA (deterministic finite automaton). In particular,∆ ⊆ Q × Σ × Q,
(q, c, q′) ∈ ∆ means that the machine can transition from stateq to stateq′ when reading input symbol
c.

d. We extend the generality of having a next state relation to allowing multiple initial states.Q0 ⊆ Q
is the set of initial states.

e. F is the set of accepting states.

2. The acceptance condition
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a. Define∆̂
b. Define the acceptance condition
c. An example

C. Adding ε transitions
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