CpSc421 Introduction to Theory of Computing September 12, 2005

Today'’s lecture: Regular Languages
I. Examples of Regular Languages
Il. Closure Properties
[ll. More Examples
Reading:
Today: Regular Sets — Rea#kozenlecture 4 (o1Sipserl.1. as before).
September 14:Non-Determinism — Readozenlecture 5 o1Sipserl.2.
September 16:Equivalence of DFAs and NFAs — Reagdozenlecture 6 (o1Sipserl.2. as before).
September 19:Regular Expressions — Reatozenlectures 7 & 8 oiSipserl.3.

September 21:Equivalence of Regular expressions and Finite Automata Re€agenlecture 9 (orSipserl.3. as
before).

September 23:Nonregular Languages — Reatbzenlecture 12 oiSipserl.4.

September 26:More examples of the pumping Lemma Re#&dzenlecture 13 oiSipserl.4.
September 28:Applications of finite automata

September 30:More applications

October 26: Midterm: In class.

l. Examples of Regular Languages

A. Examples that we've already seen:

Strings in{a, b, c}* such that everyd' is followed by a b’ without an intervening¢’ (DQ Sept. 9).
Strings in{0, 1}* with an odd number ofl’s (Sept. 9 lecture).

Strings in{a, b}* that have at least threa’s (Kozen, lecture 3).

Strings in{a, b}* that have three consecutiv&'s (Kozen, lecture 3).

Strings in{0, 1}* that end with a1’ (Sipser, example 1.2).

Strings in{0, 1}* that don’t end with a1’ (Sipser, example 1.3).

Strings in{a, b}* that start and end with the same symbol.

A simplistic spelling checker (Sept. 9 lecture).

Strings in{0, 1, 2, reset }* such that the sum of the input symbols (when interpreted in the obvious
way as integers) since the last$et ’ (or the beginning of the input string if the input has meset '
symbols) is a multiple of three (Sipser example 1.5).

10. Stringsin{0, 1, ...k—1, reset }* such that the sum of the input symbols as calculated in the previous
example is a multiple of.

© o N gOrwDdNPRE

11.

three.

(0.0)

(0,1)
(10) 'D (1.0)

(1.1)

@ (0,0)

(0,1) (0,2)
(0,0), (1,2) (1,0)

Figure 1: A finite automaton for comparing two numbers

Strings in{0, 1}* that when interpreted as binary numbers (most significant bit first) are a multiple of

B. One more example: a language that inputs pairs of binary numbers and accepts if the first number is greater
than or equal to the second. The number are input with the most significant bit first.

1.

a.

b.

2.

b

= ({07 1}7 {07 1})

In other words, each input is a pair of two bits. The left element of the pair is the bit for the “first”

number being input, and the right element is the bit for the “second” number being input.

From now on, I'll writeB as an abbreviation fof0, 1}.

Acceptance condition:
| first define a functiorval : ¥* — Z x Z as shown below (wherg denotes the integers):

val(e) = (0,0)
val(s- (a,b)) = (2=xfirst(val(s)) + a,2 = second(val(s)) + b)

A string, s, is in the language iffirst(val(s)) > second(val(s)).
A finite automaton that recognizes this language

3.

a.

b.

Design

val(e) = (0,0). Thus, the empty string is accepting. This means that the initial state is accepting.

Now, consider two binary numbers represented by stringand s, in B*. Assume that; and
so have the same length. Let, y;, x2, yo be strings such that and = z1y1; so = x2ys; andx;
andzs have the same length (thys andy, have the same length). Note that if the binary number
represented by, is greater than the binary number representedfthens; > s, regardless of
the details ofy; andys. Conversely, ifr; < x9, thens; < s,. Stringsy; andys only matter if
1 = X9.

Based on these observations, our automaton keeps track of whether the first number is less-than,
equal-to, or greater-than the second based on the prefix that it has read so far. The machine starts
in the state where the two numbers are equal (the empty string en¢éatedsoth). It moves to the
“less-than” or “greater-than” state as soon as it sees a bit where the two numbers differ. Once it has
done so, it remains in that state for the rest of the string.

The machine accepts if the first number is greater-than-or-equal to the second. Thus, the states
corresponding to “greater-than” and “equal” are accepting states, and the state corresponding to
“less-than” is a non-accepting state.

Figure 1 shows the finite automaton based on this design.

C. Here’s the formal definition of the machine:

i.. Y>=BxB

i.. Q={LT,EQ,GT}

iii.. §(LT,¢) = LT, forallcinX
4(EQ,(0,0)) = EQ
0(EQ,(0,1)) = LT
0(EQ,(1,0)) = GT
5(EQ,(1,1) = EQ

§(GT,¢) = GT, forallcinX

iv.. qO:EQ

v.. F={EQ,GT}

4, Correctness proof: by induction on the length of the input string.

a. Induction hypothesis:

Defines : Q@ x ¥* — @ in the usual way. The induction hypothesis is:

5(qo, 5) LT, iff first(val(s)) < second(val(s))
5(go,s) = EQ, Iiff first(val(s)) = second(val(s))
5(qo, s) GT, iff first(val(s)) > second(val(s))

b. Base steps = ¢
From the definition oal(s), val(e) =

(0,0). Thus,first(val(e)) = 0, andsecond(val(e)) = 0. By

the definition ofdelta, 6(q0, €) = qo, and by the definition of the automatop, = EQ. Thus, the

induction hypothesis is satisfied for the base case.
C. Induction steps =z - ¢
We consider three cases dependingletia(z).
casedelta(qo, z) = LT:

1. first(val(z)) < second(val(x)), Ind. and case hypotheses
2. first(val(z)) < second(val(z)) — val(s) e Z x Z
3. 2 «first(val(z)) +1 < 2=« second(val (L)) mult. both sides by 2 and add 1
4. 2 «first(val(z)) +1 < 2=xsecond(val(x)), add one more to the right side
5. 2=xfirst(val(z)) + firste < 2« first(val(z)) + 1, c<1
6. first(val(s)) = 2xfirst(val(x)) + ¢, def.val
7. first(val(s)) < 2=xsecond(val(z)), steps 4,5, 6
8. 2« second(val(z)) < second(val(s)), analogous to steps 5, 6, 7
9. first(val(s)) < second(al(s)), steps 7, 8

10. 0(go,8) = 6((qo7 x),c), def.o

11. S(qo, s) = O(LT,c), case hypothesis

12. 5(qo,s) = LTdef.s

13. The induction hypothesis is maintained steps 9, 12

d. O
5. Can you design an automaton that accepts pairs of binary numbers and accepts if the first is greater-than-

or-equal-to the second when the numbers are input with their least significant bits first?

Il. Translating finite automata into sequential circuits

Reminder: I'll never ask you to do this on homework or tests. This is just to aid intuition for the mathematical

constructions that come next.
A.

c.

Consider the languagés; over {a,b,c}*, where everya’ is followed by a b’ without an intervening

a

a ()
\BEL’@:)a’b’C

b, c

Figure 2: The state transition diagram for a finite automaton that recognizes the language described in Il.A

1. Figure 2 shows the state transition diagram for a finite automaton that recognizes this language.
2. The formal definition of the automaton is the 5-tupdg, 3, 6, qo, F') where
Q = {X,y,z}
Y = {a,b,c}
fdEQR XY =X
qo =X
F={X}
with
i(X,a)=Y, d(X,b)=X, &X,c)=X,
s(Y,a)=Y, 4(Y,b)=X, 4(Y,c)=2,
0(Z,a)=2, 6(Z,b)=2, o6(Z,c)=Z
3. We represent states with two binary bits, and arbitrarily choose to use the mapping:
X < (0,0)
Y < (0,1)
Z < (1,0)

We will write Qp,., = {(0,0), (0,1), (1,0)} to represent the set of states used by the hardware.
4, Likewise, we represent each input symbol with two bits, and arbitrarily choose the mapping

a < (0,0
b < (0,1)
c < (1,0)

We will write £, = {(0,0), (0,1), (1,0)} to represent the set of input symbols used by the hardware.
5. Applying these mappings bwe get

5hw((0a0)7 (an)) = (Ovl)v i(X,a)=Y
6hw((0a 0)7 (0’ 1)) = (07 O)’ 5()(’ b) =X
6h’w((050)7 (170)) = (070)’ 5(X’C) =X
5hw((051)7 (O’O)) = (Ovl)v 6<Y7a) =Y
onw((0,1), (0,1)) = (0,0), o(Y,b)=X
5h’w((051)7 (170)) = (170)7 5(Y’C) =Z
6hw((1’0)7 (0’0)) = (170)’ 6(2,8.) =Z
6hw((170)7 (071)) = (170)’ 5(va) =Z
onw((1,0), (1,0)) = (1,0), d4(Z,c)=Z

|n1|n0 ql qO

L E
” D Q Waccept

T

T
O
O
|

|

step

Figure 3: A template for implementing a sequential circuit for the finite automaton from figure 2

6. Figure 3 shows a template for implementing this automaton as a sequential circuit. The two flip-flops
hold the state of the circuit. The circuit advances to the next state on the rising edgestéghsgnal.
Now, we just need to implement the logic f@f, g1, andg 4.
a. go calculates the right bit of the two-bit state-tuple. From the definitio),gfabove we get:

g = (n=a)a(@=X)V (n=a)Ar(q=Y)
= (n=a)A((@=X)V(q=Y))
= (ihl = 0)./\ (ing=0)A((@; =0)A(9y=0) V (4, =0) A (dy = 1))
= —in; A-ing A —Q

n
n

b. Likewise,
g1 = (in=c)A(q=Y)V (q=2)
(intAgy) vV ay
Here, we took advantage of the fact that an inpufiofl) is forbidden and that a state ¢f, 1) is
unreachable when simplifying the formula.
C. The only accepting state }. Thus,

ga = —0; A0

7. Figure 4 shows the circuit obtained by translating the Boolean formulas above directly into logic circuits.

8. Note that this circuit actually has four states and four input symbols. The fourth s(dtd jsand the
fourth input is(1,1). It is straightforward to show that with the hardware shown there are no transitions
into state(1, 1), and that statél, 1) transitions to statél, 0) (i.e. Z) regardless of what symbol is input.
Similarly, it is straightforward to show that the transitions for input synitiol) are identical to those for
input symbol(1,0) (i.e. textttc).

B. Consider the languag®, over¥: = {a, b, c}*, such thatw € B, iff the number of &’s in w is divisible
by 4.
1. Figure 5 shows the state transition diagram for an automaton that recognizes labguage

2. The automaton from figure 5 uses the same alphaheds the automaton from 1lLA. We defirdg =
{0,1,2,3}, g0 =0, andF = 0. We define in the same fashion as we did in section Il.A.

”‘{5}'3 Q=])—accept
\#
—4 D)o QJ

\—0
step

Figure 4: A sequential circuit that implements the finite automaton from figure 2

O

b,

b, c

Figure 5: The state transition diagram for a finite automaton that that recognizes the language described in 11.B

=
H—.
S
o
o]
H

do

Ej—:Dj» D Q=)—accept
\#
v Do Q 1

I—

step

ECENS

Figure 6: A sequential circuit that implements the finite automaton from figure 5

3. To make a hardware implementation, we implement input symbols with two bits using the same encoding
as before — this will simplify our presentation of product machines shortly. We implement states with two
bits using the mapping:

0 (0,0), 1< (0,1), 2+ (1,0), 3« (1,1)

4, The process of translating éfto a logic circuit is analogous to that described earlier. The acceptance
condition just happens to be the same. Figure 6 shows the final circuit.

Il Closure Properties for Regular Languages

A. Regular Languages are closed under intersection:
If B; andBsy are regular languages, théh N B; is a regular language as well.
1. Intuition from the hardware perspective
a Use the hardware from both automata
b Connect the input to both machines
C. Connect the clock to both machines
d The combined machine accepts if both machines accept
e Note that if the first machine has input bits andh; state bits, and the second machine tasputs
(the same input alphabet) and state bits, then the combined machine hasput bits andn; + no
state bits. Furthermore,, state bits encode up &' states, and. state bits encode up @52 states.
Thus, the combined machine has uRte "2 states. This is the product of the number of states for
the two individual machines. This makes sense. For each ofttstates that machin&/; is in, M,
can potentially be in any of its, states.

2. The product machine construction, let:
Ml = (Q17Za617q0,17F1)
My = (Q2,%,02,q0,2, F>)

We'll now defineMin2 = (Q1n2, X, 0102, 90,102, Fin2) @s the machine that recognizes the intersection of
the languages recognized by, and M.

- VVV@ D Q])—accept

T
<
<

Lee
O
[

LA
LA
(o — Egg@» D Q L])—accept
el of
L |
step

Figure 7: A sequential circuit that recognizes the intersection of the languages for the machines from figures 2 and 5

o

Q12 = Q1 X Q2

Intuitively, each state is a tupl@: , ¢2) whereg; corresponds to the state of machihg andg, corre-

sponds to the state of machifié,. This also corresponds to the hardware construction of having the

flip-flops for both machines and thus potentially having all combinations of pairs of their states.

b. Y is unchanged. The product machine reads inputs from the same alphabet as the two original
machines. This corresponds to connecting the input wires to both machines in figure 7.

C. 01n2((q1,42),¢) = (61(q1,€), 62(g2, €)) This says that the component of the product machine’s state
that corresponds to machiié, changes according to the state transition function of machipneand
likewise for the component corresponding to machifie In the hardware, we see this in that the next
state logic for each machine is used to update the corresponding flip-flops. Furthermstep tignal
is connected to the clock inputs of the flip-flops for both machines. This means that the two halves of
the product machine take steps at the same time in response to the same input symbol.

d. go,1n2 = (40,1, go,2) — the product machine starts in the state that corresponds to the initial state of
the two component machines.

e. F = I} x F, — the product machine accepts if its state corresponds to states in the component

machines where both component machines are accepting. This corresponds to the AND gate that

produces thaccept signal in figure 7.

3. Proof of closure under intersection
By induction on the length of the input string,
a. Definedyn2 in the natural way:
Cbimelge) = g
01n2(q,w-C) = d1n2(d1n2(g, w),c)

b. Induction hypothesis:

d1m2((q1,42),8) = (01(q1,5),02(q2, 3))

C. Base casew = ¢
(q17 CI2)

= (d1(qre), d1(qr€))

5102(@17 Q2), 6)

d. Induction step: assume far, prove forw - ¢

61(‘12 (SEQQ((qla CI2A>7 w)> C)7 def 51(72

01n2((01(q1, w), d2(g2, w)), €), induction hypothesis
== (<§1(51(Q17w)79),52(52((]%w)vc)A)adef- 5}!’72

= (51(q1,w~C),52(q2,w~c)),def.51,and52

5102(@17(12); w - C)

4, Example, the machine that accepts the intersectia,cdnd B, as defined in sections II.A and I1.B is
M = (Q1n2, %, 0112, 90,112, Fin2) With

QlﬂQ = {(X,O),(X,l),(X,Z),(X,S),(Y,O),(Y,l),(Y,Z),(Y,3),(Z,O),(Z,l),(Z,Z),(Z,:%)}
¥ = {a,b,c}

Q012 = (X,0)

Fine = {(X,0)}

Rather than writing out the 24 cases %F-, I've drawn the state transition diagram in figure 8.

B. Regular Languages are closed under complement:
If Bis aregular language, then B is a regular language as well.

1. Hardware intuition: just add an inverter.
2. The formal construction

_/

Figure 8: The state transition diagram for a machine that recognizes the intersection of the languages for the machines
from figures 2 and 5

10

C. Regular Languages are closed under union:
If B, andB- are regular languages, théh U B, is a regular language as well.

1. Intuition from the hardware perspective: just add an OR gate.
2. The formal construction: De Morgan'’s law given closure under intersection and complement.

D. Regular Languages are closed under arbitrary Boolean operations:
Regular languages are closed under intersection and complement. That provides a “NAND” function, which
we have already shown to be universal for implementing Boolean functions.

11

