
CpSc 421 Introduction to Theory of Computing September 12, 2005

Today’s lecture: Regular Languages

I. Examples of Regular Languages
II. Closure Properties

III. More Examples

Reading:

Today: Regular Sets – Read:Kozenlecture 4 (orSipser1.1. as before).

September 14:Non-Determinism – Read:Kozenlecture 5 orSipser1.2.

September 16:Equivalence of DFAs and NFAs – Read:Kozenlecture 6 (orSipser1.2. as before).

September 19:Regular Expressions – Read:Kozenlectures 7 & 8 orSipser1.3.

September 21:Equivalence of Regular expressions and Finite Automata Read:Kozenlecture 9 (orSipser1.3. as
before).

September 23:Nonregular Languages – Read:Kozenlecture 12 orSipser1.4.

September 26:More examples of the pumping Lemma Read:Kozenlecture 13 orSipser1.4.

September 28:Applications of finite automata

September 30:More applications

October 26: Midterm: In class.

I. Examples of Regular Languages

A. Examples that we’ve already seen:

1. Strings in{a, b, c}∗ such that every ‘a’ is followed by a ‘b’ without an intervening ‘c ’ (DQ Sept. 9).

2. Strings in{0, 1}∗ with an odd number of ‘1’s (Sept. 9 lecture).

3. Strings in{a, b}∗ that have at least three ‘a’s (Kozen, lecture 3).

4. Strings in{a, b}∗ that have three consecutive ‘a’s (Kozen, lecture 3).

5. Strings in{0, 1}∗ that end with a ‘1’ (Sipser, example 1.2).

6. Strings in{0, 1}∗ that don’t end with a ‘1’ (Sipser, example 1.3).

7. Strings in{a, b}∗ that start and end with the same symbol.

8. A simplistic spelling checker (Sept. 9 lecture).

9. Strings in{0, 1, 2, reset }∗ such that the sum of the input symbols (when interpreted in the obvious
way as integers) since the last ‘reset ’ (or the beginning of the input string if the input has no ‘reset ’
symbols) is a multiple of three (Sipser example 1.5).

10. Strings in{0, 1, . . . k−1, reset }∗ such that the sum of the input symbols as calculated in the previous
example is a multiple ofk.

1

(1,0)

(0,1)

>

<

(0,0)
(0,1)
(1,0)
(1,1)

(0,0)
(0,1)
(1,0)
(1,1)

=

(0,0), (1,1)

Figure 1: A finite automaton for comparing two numbers

11. Strings in{0, 1}∗ that when interpreted as binary numbers (most significant bit first) are a multiple of
three.

B. One more example: a language that inputs pairs of binary numbers and accepts if the first number is greater
than or equal to the second. The number are input with the most significant bit first.
1. Σ = ({0, 1}, {0, 1}).

a. In other words, each input is a pair of two bits. The left element of the pair is the bit for the “first”
number being input, and the right element is the bit for the “second” number being input.

b. From now on, I’ll writeB as an abbreviation for{0, 1}.
2. Acceptance condition:

I first define a functionval : Σ∗ → Z× Z as shown below (whereZ denotes the integers):

val(ε) = (0, 0)
val(s · (a, b)) = (2 ∗ first(val(s)) + a, 2 ∗ second(val(s)) + b)

A string,s, is in the language ifffirst(val(s)) ≥ second(val(s)).
3. A finite automaton that recognizes this language

a. Design
i.. val(ε) = (0, 0). Thus, the empty string is accepting. This means that the initial state is accepting.

ii.. Now, consider two binary numbers represented by stringss1 ands2 in B∗. Assume thats1 and
s2 have the same length. Letx1, y1, x2, y2 be strings such that ands1 = x1y1; s2 = x2y2; andx1

andx2 have the same length (thusy1 andy2 have the same length). Note that if the binary number
represented byx1 is greater than the binary number represented byx2, thens1 > s2 regardless of
the details ofy1 andy2. Conversely, ifx1 < x2, thens1 < s2. Stringsy1 andy2 only matter if
x1 = x2.

iii.. Based on these observations, our automaton keeps track of whether the first number is less-than,
equal-to, or greater-than the second based on the prefix that it has read so far. The machine starts
in the state where the two numbers are equal (the empty string encodes0 for both). It moves to the
“less-than” or “greater-than” state as soon as it sees a bit where the two numbers differ. Once it has
done so, it remains in that state for the rest of the string.

iv.. The machine accepts if the first number is greater-than-or-equal to the second. Thus, the states
corresponding to “greater-than” and “equal” are accepting states, and the state corresponding to
“less-than” is a non-accepting state.

b. Figure 1 shows the finite automaton based on this design.

2

c. Here’s the formal definition of the machine:
i.. Σ = B× B

ii.. Q = {LT, EQ, GT}

iii.. δ(LT, c) = LT, for all c in Σ
δ(EQ, (0, 0)) = EQ
δ(EQ, (0, 1)) = LT
δ(EQ, (1, 0)) = GT
δ(EQ, (1, 1)) = EQ

δ(GT, c) = GT, for all c in Σ
iv.. q0 = EQ
v.. F = {EQ, GT}

4. Correctness proof: by induction on the length of the input string.
a. Induction hypothesis:

Defineδ̂ : Q× Σ∗ → Q in the usual way. The induction hypothesis is:

δ̂(q0, s) = LT, iff first(val(s)) < second(val(s))
δ̂(q0, s) = EQ, iff first(val(s)) = second(val(s))
δ̂(q0, s) = GT, iff first(val(s)) > second(val(s))

b. Base step:s = ε
From the definition ofval(s), val(ε) = (0, 0). Thus,first(val(ε)) = 0, andsecond(val(ε)) = 0. By
the definition of ˆdelta, δ̂(q0, ε) = q0, and by the definition of the automaton,q0 = EQ. Thus, the
induction hypothesis is satisfied for the base case.

c. Induction step:s = x · c
We consider three cases depending on̂delta(x).

case ˆdelta(q0, x) = LT:

1. first(val(x)) < second(val(x)), Ind. and case hypotheses
2. first(val(x)) ≤ second(val(x))− 1, val(s) ∈ Z× Z
3. 2 ∗ first(val(x)) + 1 ≤ 2 ∗ second(val(x))− 1, mult. both sides by 2 and add 1
4. 2 ∗ first(val(x)) + 1 < 2 ∗ second(val(x)), add one more to the right side
5. 2 ∗ first(val(x)) + firstc ≤ 2 ∗ first(val(x)) + 1, c ≤ 1
6. first(val(s)) = 2 ∗ first(val(x)) + c, def.val
7. first(val(s)) < 2 ∗ second(val(x)), steps 4, 5, 6
8. 2 ∗ second(val(x)) ≤ second(val(s)), analogous to steps 5, 6, 7
9. first(val(s)) < second(val(s)), steps 7, 8

10. δ̂(q0, s) = δ(δ̂(q0, x), c), def. δ̂
11. δ̂(q0, s) = δ(LT, c), case hypothesis
12. δ̂(q0, s) = LTdef.δ
13. The induction hypothesis is maintained steps 9, 12

d. �

5. Can you design an automaton that accepts pairs of binary numbers and accepts if the first is greater-than-
or-equal-to the second when the numbers are input with their least significant bits first?

II. Translating finite automata into sequential circuits
Reminder: I’ll never ask you to do this on homework or tests. This is just to aid intuition for the mathematical
constructions that come next.

A. Consider the language,B1 over {a, b, c}∗, where every ‘a’ is followed by a ‘b’ without an intervening
‘c ’.

3

a

b
b,c

c a,b,cY ZX

a

Figure 2: The state transition diagram for a finite automaton that recognizes the language described in II.A

1. Figure 2 shows the state transition diagram for a finite automaton that recognizes this language.

2. The formal definition of the automaton is the 5-tuple(Q,Σ, δ, q0, F) where

Q = {X, Y, Z}
Σ = {a, b, c}

δ ∈ Q× Σ → Σ
q0 = X

F = {X}

with
δ(X, a) = Y, δ(X, b) = X, δ(X, c) = X,
δ(Y, a) = Y, δ(Y, b) = X, δ(Y, c) = Z,
δ(Z, a) = Z, δ(Z, b) = Z, δ(Z, c) = Z

3. We represent states with two binary bits, and arbitrarily choose to use the mapping:

X ↔ (0, 0)
Y ↔ (0, 1)
Z ↔ (1, 0)

We will write Qhw = {(0, 0), (0, 1), (1, 0)} to represent the set of states used by the hardware.

4. Likewise, we represent each input symbol with two bits, and arbitrarily choose the mapping

a ↔ (0, 0)
b ↔ (0, 1)
c ↔ (1, 0)

We will write Σhw = {(0, 0), (0, 1), (1, 0)} to represent the set of input symbols used by the hardware.

5. Applying these mappings toδ we get

δhw((0, 0), (0, 0)) = (0, 1), δ(X, a) = Y
δhw((0, 0), (0, 1)) = (0, 0), δ(X, b) = X
δhw((0, 0), (1, 0)) = (0, 0), δ(X, c) = X

δhw((0, 1), (0, 0)) = (0, 1), δ(Y, a) = Y
δhw((0, 1), (0, 1)) = (0, 0), δ(Y, b) = X
δhw((0, 1), (1, 0)) = (1, 0), δ(Y, c) = Z

δhw((1, 0), (0, 0)) = (1, 0), δ(Z, a) = Z
δhw((1, 0), (0, 1)) = (1, 0), δ(Z, b) = Z
δhw((1, 0), (1, 0)) = (1, 0), δ(Z, c) = Z

4

QD

q0q1in0in1

QDg0

g1 gA

step

accept

Figure 3: A template for implementing a sequential circuit for the finite automaton from figure 2

6. Figure 3 shows a template for implementing this automaton as a sequential circuit. The two flip-flops
hold the state of the circuit. The circuit advances to the next state on the rising edge of thestep signal.
Now, we just need to implement the logic forg0, g1, andgA.
a. g0 calculates the right bit of the two-bit state-tuple. From the definition ofδhw above we get:

g0 = (in = a) ∧ (q = X) ∨ (in = a) ∧ (q = Y)
= (in = a) ∧ ((q = X) ∨ (q = Y))
= (in1 = 0) ∧ (in0 = 0) ∧ ((q1 = 0) ∧ (q0 = 0) ∨ (q1 = 0) ∧ (q0 = 1))
= ¬in1 ∧ ¬in0 ∧ ¬q1

b. Likewise,
g1 = (in = c) ∧ (q = Y) ∨ (q = Z)

= (in1 ∧ q0) ∨ q1

Here, we took advantage of the fact that an input of(1, 1) is forbidden and that a state of(1, 1) is
unreachable when simplifying the formula.

c. The only accepting state isX. Thus,

gA = ¬q1 ∧ ¬q0

7. Figure 4 shows the circuit obtained by translating the Boolean formulas above directly into logic circuits.

8. Note that this circuit actually has four states and four input symbols. The fourth state is(1, 1) and the
fourth input is(1, 1). It is straightforward to show that with the hardware shown there are no transitions
into state(1, 1), and that state(1, 1) transitions to state(1, 0) (i.e. Z) regardless of what symbol is input.
Similarly, it is straightforward to show that the transitions for input symbol(1, 1) are identical to those for
input symbol(1, 0) (i.e. textttc).

B. Consider the language,B2 overΣ = {a, b, c}∗, such thatw ∈ B2 iff the number of ‘a’s in w is divisible
by 4.
1. Figure 5 shows the state transition diagram for an automaton that recognizes languageB2.

2. The automaton from figure 5 uses the same alphabet,Σ, as the automaton from II.A. We defineQ =
{0, 1, 2, 3}, q0 = 0, andF = 0. We defineδ in the same fashion as we did in section II.A.

5

QD

q0q1in0in1

QD

g1

g0

accept
gA

step

Figure 4: A sequential circuit that implements the finite automaton from figure 2

1

23

0

b,c

b,c

b,c

b,c

a

a

aa

Figure 5: The state transition diagram for a finite automaton that that recognizes the language described in II.B

6

QD

q0q1

QD

accept

in0in1

step

Figure 6: A sequential circuit that implements the finite automaton from figure 5

3. To make a hardware implementation, we implement input symbols with two bits using the same encoding
as before – this will simplify our presentation of product machines shortly. We implement states with two
bits using the mapping:

0↔ (0, 0), 1↔ (0, 1), 2↔ (1, 0), 3↔ (1, 1)

4. The process of translating ofδ to a logic circuit is analogous to that described earlier. The acceptance
condition just happens to be the same. Figure 6 shows the final circuit.

III. Closure Properties for Regular Languages

A. Regular Languages are closed under intersection:
If B1 andB2 are regular languages, thenB1 ∩B2 is a regular language as well.
1. Intuition from the hardware perspective

a. Use the hardware from both automata
b. Connect the input to both machines
c. Connect the clock to both machines
d. The combined machine accepts if both machines accept
e. Note that if the first machine hasm input bits andn1 state bits, and the second machine hasm inputs

(the same input alphabet) andn2 state bits, then the combined machine hasm input bits andn1 + n2

state bits. Furthermore,n1 state bits encode up to2n1 states, andn2 state bits encode up to2n2 states.
Thus, the combined machine has up to2n1+n2 states. This is the product of the number of states for
the two individual machines. This makes sense. For each of then1 states that machineM1 is in, M2

can potentially be in any of itsn2 states.

2. The product machine construction, let:

M1 = (Q1,Σ, δ1, q0,1, F1)
M2 = (Q2,Σ, δ2, q0,2, F2)

We’ll now defineM1∩2 = (Q1∩2,Σ, δ1∩2, q0,1∩2, F1∩2) as the machine that recognizes the intersection of
the languages recognized byM1 andM2.

7

QD

QD

QD

QD

accept

accept

0123
qin

01

step

Figure 7: A sequential circuit that recognizes the intersection of the languages for the machines from figures 2 and 5

8

a. Q1∩2 = Q1 ×Q2

Intuitively, each state is a tuple(q1, q2) whereq1 corresponds to the state of machineM1 andq2 corre-
sponds to the state of machineM2. This also corresponds to the hardware construction of having the
flip-flops for both machines and thus potentially having all combinations of pairs of their states.

b. Σ is unchanged. The product machine reads inputs from the same alphabet as the two original
machines. This corresponds to connecting the input wires to both machines in figure 7.

c. δ1∩2((q1, q2), c) = (δ1(q1, c), δ2(q2, c)) This says that the component of the product machine’s state
that corresponds to machineM1 changes according to the state transition function of machineM1, and
likewise for the component corresponding to machineM2. In the hardware, we see this in that the next
state logic for each machine is used to update the corresponding flip-flops. Furthermore, thestep signal
is connected to the clock inputs of the flip-flops for both machines. This means that the two halves of
the product machine take steps at the same time in response to the same input symbol.

d. q0,1∩2 = (q0,1, q0,2) – the product machine starts in the state that corresponds to the initial state of
the two component machines.

e. F = F1 × F2 – the product machine accepts if its state corresponds to states in the component
machines where both component machines are accepting. This corresponds to the AND gate that
produces theaccept signal in figure 7.

3. Proof of closure under intersection
By induction on the length of the input string,w.
a. Defineδ̂1∩2 in the natural way:

δ̂1∩2(q, ε) = q

δ̂1∩2(q, w · c) = δ1∩2(δ̂1∩2(q, w), c)

b. Induction hypothesis:

δ̂1∩2((q1, q2), s) = (δ̂1(q1, s), δ̂2(q2, s))

c. Base case:w = ε
δ̂1∩2((q1, q2), ε) = (q1, q2)

= (δ̂1(q1ε), δ̂1(q1ε))

d. Induction step: assume forw, prove forw · c

δ̂1∩2((q1, q2), w · c) = δ1∩2(δ̂1∩2((q1, q2), w), c), def. δ̂1∩2

= δ1∩2((δ̂1(q1, w), δ̂2(q2, w)), c), induction hypothesis
= (δ1(δ̂1(q1, w), c), δ2(δ̂2(q2, w), c)), def.δ1∩2

= (δ̂1(q1, w · c), δ̂2(q2, w · c)), def. δ̂1, andδ̂2

4. Example, the machine that accepts the intersection ofB1 andB2 as defined in sections II.A and II.B is
M = (Q1∩2,Σ, δ1∩2, q0,1∩2, F1∩2) with

Q1∩2 = {(X, 0), (X, 1), (X, 2), (X, 3), (Y, 0), (Y, 1), (Y, 2), (Y, 3), (Z, 0), (Z, 1), (Z, 2), (Z, 3)}
Σ = {a, b, c}

q0,1∩2 = (X, 0)
F1∩2 = {(X, 0)}

Rather than writing out the 24 cases forδ1∩2, I’ve drawn the state transition diagram in figure 8.

B. Regular Languages are closed under complement:
If B is a regular language, then∼ B is a regular language as well.
1. Hardware intuition: just add an inverter.

2. The formal construction

9

Y, 1() Z, 1()

Y, 2() Z, 2()

Y, 3() Z, 3()

Y, 0() Z, 0()b,c b,c

b,c b,c

b,c b,c

b,c b,c

X, 1()

X, 2()

X, 3()

X, 0()

a

c

a a

a

c

a a

a

c

a a

c
b

b

b

b

aa a

Figure 8: The state transition diagram for a machine that recognizes the intersection of the languages for the machines
from figures 2 and 5

10

C. Regular Languages are closed under union:
If B1 andB2 are regular languages, thenB1 ∪B2 is a regular language as well.

1. Intuition from the hardware perspective: just add an OR gate.

2. The formal construction: De Morgan’s law given closure under intersection and complement.

D. Regular Languages are closed under arbitrary Boolean operations:
Regular languages are closed under intersection and complement. That provides a “NAND” function, which
we have already shown to be universal for implementing Boolean functions.

11

