CpSc 421 Introduction to Theory of Computing September 9, 2005

Today'’s lecture: Finite Automata

I. Finite Automata as a Model for Sequential Circuits
Il. Representing Finite Automata with Transition Graphs
[ll. Formally Defining Finite Automata
IV. Regular Languages
Announcements

e The course newsgroupmtbc.courses.cpsc.421. Read it. I'll post announcements to the newsgroup. You are
encouraged to post questions, comments, etc. You can get extra credit by posting my mistakes — see “Bug
Bounties” below.

e Bug Bounties: We all make mistakes. When | make a mistake, you get extra credit. Here's how it works. If
| hand out a homework problem (or “Daily Question”) with an error, post a message to the newsgroup. If |
agree that it's an error, you'll get extra credit. If the error is one that would prevent someone from solving the
problem, you get the full value of the problem as extra credit. If it's a minor typo, you get one point. Errors of
intermediate severity get intermediate extra credit. fliseperson to report the error gets the extra credit.

Bug bounties are also in effect during exams. If you find an error on the midterm or final, just raise your hand
and point it out to me. I'll write the correction on the white/black board and give you extra-credit on the exam.
Once again, the extra credit goes to the first person to report the error.
Reading:

September 9:Finite Automata — Readozenlecture 3 orSipserl.1.

September 12:Regular Sets — Reatkozenlecture 4 (o1Sipserl.1l. as before).

September 14:Non-Determinism — Readozenlecture 5 orSipserl.2.

September 16:Equivalence of DFAs and NFAs — Reagdozenlecture 6 (o1Sipserl.2. as before).

September 19:Regular Expressions — Reagozenlectures 7 & 8 oiSipserl.3.

September 21:Equivalence of Regular expressions and Finite Automata Ri€azenlecture 9 (orSipserl.3. as
before).

September 23:Nonregular Languages — Reatbzenlecture 12 oiSipserl.4.

September 26:More examples of the pumping Lemma Re#dzenlecture 13 oiSipserl.4.
September 28:Applications of finite automata

September 30:More applications

October 26: Midterm: In class.

} 1
in Q}D Q[—+— accept | ‘0‘@’
| b
reset—— R ‘ shy
step |

Figure 1: A Simple Finite State Machine

Finite Automata as a Model for Sequential Circuits

a s~ DR

N o=

The left half of figure 1 shows a simple sequential circuit.

Whenreset is asserted, the circuit transitions to its initial state veiticept = 0.

Thestep signal is the clock input: with each rising edgestép, the circuit makes a transition.
The circuit has two states correspondinge= 0 andQ = 1.

The circuit changes stateiif is high during a rising edge atep.

Conversely, the circuit remains in its current state statei low during a rising edge daftep.

The right half of figure 1 shows the transition graph for this circuit.

0.

Initially, the state machine is in state O.
The state machine changes state when the input is a 1 and remains in its current state when its input is a

The machine accepts an input string iff it has an odd number of ones. We can prove this by a simple

induction proof. I'll skip the proof in the lecture to keep the lecture within an hour. I'll include the proof
here as a simple example of how such a proof is structured. We will construct many induction proofs about
automata during the semester.

Proof that the machine accepts a string iff it has an odd number of ones (by induction on the length of

the input string):

a.

b.

Induction Hypothesis: The machine is in state O after reading an even number of ones and in state 1
after reading an odd number of ones.
Base case: the input string is empty.
The machine starts in state 0. The empty string contains zero ones. Zero is an even number. Thus, the
machine is in state 0 after reading the empty string, and this satisfies the induction hypothesis.
Induction step: assume for inpuf prove for inputza wherexz € {0,1}*, anda € {0,1}. There
are four cases to consider:
x has an even number of ones ané- 0:
After readinge, the machine is in state 0 by the induction hypothesis. Thus, after readjrilje ma-
chine is in state 0 because the machine remains in its current state when the thgeithermore,
20 has the same number bfs asxz. By the case assumptiom,has an even number @fs; thus,
so doescO because they both have the same number of ones. Therefore, the induction hypothesis is
maintained.
x has an even number of ones ané- 1:
After readingx, the machine is in state 0 by the induction hypothesis. Thus, after readinipe
machine is in state 1 because the machine changes its current state when thelinputtisermore,
xz1 has one mord z. By the case assumptiom,has an even number d@fs; thus,z1 has an odd
number because it has one more. Again, the induction hypothesis is maintained.
The two cases when has an odd number of ones: The arguments are similar to those above and |
omit them here.

n

n

reset —— R ~ S
v

step

Figure 2: A Generic Sequential Decision Machine

C. Figure 2 shows the generic implementation of a finite state machine as a sequential circuit.

The flip-flop from figure 1 has been replacedbilip-flops. The circuit hag™ states.

The XOR-gate from figure 1 has been replaced by the oval laldelBgcall that we can implement an
arbitrary boolean function using AND, OR, and NOT gates (NAND gates alone are sufficient). Thus, we
can implement any next state function as a logic circuit.

3. The circuit hasn inputs. Thus, the input alphabet Hzi8 symbols.

4, We can implement a finite state machine with fewer tfastates or fewer tha2i™ symbols by defining
3 to be a subset of th&™ possible input values an@ to be a subset of th2” flip-flop states. Then, we
design the circuit fo such that for any € ¥ and anyy € Q, §(¢,a) € Q. The value ob for othera ¢ ©
or g ¢ Q doesn’t matter — we say that such inputs are “not-allowed” and that such states are “unreachable.”

N e

Il. Representing Finite Automata with Transition Graphs

A. The Pieces of a Transition Graph
1. States are represented by circles

a. Accepting states are represented by double cir
b. Non-accepting states are represented by single ci:

C. We often write the name of the state inside the cir
Note that the language accepted by the finite state machine is independent of the names that we choose
for the states. Accordingly, we sometimes omit the names for states because the reader can make up
names if s/he wants them to be named, and it won't affect the language that we are talking about.

2. Transitions are represented by directed arcs (i.e. arrows)
a, b, g
TN

a. The direction of the arrow shows the source and destination state for the transition.

b. The label is a list of symbols from the input alphabet. The transition is made if the next symbol of
the input string is one of the symbols listed in the label.

c. The labels of the outgoing arc from a state must partition the input alphabet. In other words, each
symbol of the alphabet must appear in the label for exactly one outgoing arc from each state.

3. The initial state is indicated by an incoming arc with no soupe@

B. Advantages (and Disadvantages) of Transition Graphs
1. They provide visual intuition for what the finite state machine does.

2. They are simpler than circuit diagrams:

a. They show the behaviour of the machine rather than how that behaviour is implemented.

b. Thus, there can be many different ways to implement the same transition diagram. We could use
different logic circuits. If we study a computing technology that doesn’t use gates and flip-flops, we can
still use the finite state machine model and state transition diagrams if artifacts in this new technology
behave as finite state machines.

3.

C.

a.

b.

Accordingly, we will use transition diagrams and the formal mathematical models for most things in
this class. | will show the hardware versions occasionally, when | think that that view provides some
extra intuition or a simpler explanation. When | do, I'll connect it right back to the more traditional
formal automata approach very quickly. If HW makes you yawn, then you can daydream for a few
minutes while | draw a schematic, and tune back in when | resume talking about sets, tuples, and
graphs.

However, they are impractical for large finite state machines.

For example, a circuit with 100 flip-flops (a relatively small circuit) has awef states — it's physi-
cally impossible to draw the state transition diagram.

Likewise, the lexical analyser for a programming language such as Java may have hundreds of states.
The state transition diagram is unwieldy, but it can still be helpful to understand that the lexical analyser
is a collection of finite state machines.

Formally Defining Finite Automata

a s~ wDdhPRE

=

2.
3.

4,

C.

1.

The ingredients of a finite automaton

An input alphabet}, a set of symbols.
A set of states().

A transition function:d : Q x X — Q.
An initial state,q.

A set of accepting stateg? C Q.

We can combine these to make a formal, mathematical description of a finite automaton

The combination is a “tuple”, that just means lump them all together.
The tuple is:(@, X, 6, qo, F).
Let M be the finite automato(, %, 4, qo, F'). The language accepted By is written L(M) and is

defined below:

a.

b.

Defined : Q x ©* — Q recursively as shown below:

6((]76) = q

d(sa) = 8(d(q.5)a)
The first line says that the machine does not change state in response to the empty string. The second
line handles non-empty strings. Letbe a string of lengtw with » > 0. Thenz can be divided into
two parts,s anda wheres is the firstn — 1 characters of anda is the last character. Note thataif
is of length 1, thers is empty. Now, we computé(q, s) which tells us what state the machine reaches
after processing the first— 1 characters of.. Call this statey’. We then computé(q’, a) to determine
the state that the machine reaches after processing the last charactérto$ gives us the state that
the machine reaches when starting in stpgd then processing string
String s is in languagel (M) iff §(qo, s) € F.
We say that this is a formal, mathematical definition because everything in the definition has a well-

defined mathematical meaning: sets, functions, sequences, and tuples.

Finite automata, transition graphs, and sequential decision circuits all recognize the same set of languages.

a.

Proof that finite automata and sequential decision circuits are equivalent.

LetC be a sequential decision circuit with input wires and: flip-flops. This circuit hag™ possible
input values, an@™ possible states. Thus, we defile= {0...2™ — 1} and@ = {0...2" — 1}
according to a binary interpretation of the values stored in the flip-flops. The combinationab logic
computes a function fror x X to Q. This is thed for the finite automaton. Similarly, we define

F = {q€Q|f(q)}

a s~

Finally, we defingy, such to be the state 0. L&f = (Q, X, 6, qo, F'). There is a straightforward proof
by induction that a string is in L(M) iff the corresponding sequence of inputs brings the sequential
decision machine to a state where #mxept output is true. The induction hypothesis is that after
processing a string of leng#h M and the circuit are in corresponding states.

b. Let M = (@, X%, 6,0, F). We construct a sequential decision machine witk= [log, |Z[] input
wires andn = [log, |Q|] flip-flops. We map the symbols iR onto the integerq0...|X| — 1}.
and likewise map the symbols @ onto the integerg0...|Q| — 1}. Now, the transition function
maps to a function from{0, 1} x {0,1}™ to {0, 1}". We can decompose this intofunctions from
{0,1}™ x {0,1}™ to {0, 1}. In the September 7 lecture, we showed that two-input AND and OR gates
and inverters are sufficient to implement any boolean function. Thus, this mapped versiaamf
be implemented. Likewise, we can implement logic fothat recognizes states mapped fréin A
straightforward induction proof shows that the circuit that we've just described recognizes the same
language ad/. The induction hypothesis again is that after processing a string of léngthand the
circuit are in corresponding states.

2. Omitted because | need to print these notes.

Examples of Regular Languages

A language that inputs pairs of binary numbers and accepts if the first number is greater than or equal to the
second.

A simplistic spelling checker — see figure 3.
Requires that every word has at least one vowel or the Igtter’
Enforces thei‘’ before ‘e* except after ¢’ rule.
Requires everyd’ to be followed by a i’ and another vowel.
Accepts many words that are not English words, suchraadfghjkl
Rejects some perfectly fine English words, suchaet, “foreign ”, and “qat .

~u= fB,a,e, i, o0,y

Figure 3: A Simplistic Spelling Checker

