
CpSc 421 Introduction to Theory of Computing September 9, 2005

Today’s lecture: Finite Automata

I. Finite Automata as a Model for Sequential Circuits
II. Representing Finite Automata with Transition Graphs

III. Formally Defining Finite Automata
IV. Regular Languages

Announcements

• The course newsgroup:ubc.courses.cpsc.421. Read it. I’ll post announcements to the newsgroup. You are
encouraged to post questions, comments, etc. You can get extra credit by posting my mistakes – see “Bug
Bounties” below.

• Bug Bounties: We all make mistakes. When I make a mistake, you get extra credit. Here’s how it works. If
I hand out a homework problem (or “Daily Question”) with an error, post a message to the newsgroup. If I
agree that it’s an error, you’ll get extra credit. If the error is one that would prevent someone from solving the
problem, you get the full value of the problem as extra credit. If it’s a minor typo, you get one point. Errors of
intermediate severity get intermediate extra credit. Thefirst person to report the error gets the extra credit.

Bug bounties are also in effect during exams. If you find an error on the midterm or final, just raise your hand
and point it out to me. I’ll write the correction on the white/black board and give you extra-credit on the exam.
Once again, the extra credit goes to the first person to report the error.

Reading:

September 9:Finite Automata – Read:Kozenlecture 3 orSipser1.1.

September 12:Regular Sets – Read:Kozenlecture 4 (orSipser1.1. as before).

September 14:Non-Determinism – Read:Kozenlecture 5 orSipser1.2.

September 16:Equivalence of DFAs and NFAs – Read:Kozenlecture 6 (orSipser1.2. as before).

September 19:Regular Expressions – Read:Kozenlectures 7 & 8 orSipser1.3.

September 21:Equivalence of Regular expressions and Finite Automata Read:Kozenlecture 9 (orSipser1.3. as
before).

September 23:Nonregular Languages – Read:Kozenlecture 12 orSipser1.4.

September 26:More examples of the pumping Lemma Read:Kozenlecture 13 orSipser1.4.

September 28:Applications of finite automata

September 30:More applications

October 26: Midterm: In class.

1

0

0 1

R S

D Q

reset

in accept

step

1

0

1

0

Figure 1: A Simple Finite State Machine

I. Finite Automata as a Model for Sequential Circuits

A. The left half of figure 1 shows a simple sequential circuit.

1. Whenreset is asserted, the circuit transitions to its initial state withaccept = 0.

2. Thestep signal is the clock input: with each rising edge ofstep, the circuit makes a transition.

3. The circuit has two states corresponding toQ = 0 andQ = 1.

4. The circuit changes state ifin is high during a rising edge ofstep.

5. Conversely, the circuit remains in its current state state ifin is low during a rising edge ofstep.

B. The right half of figure 1 shows the transition graph for this circuit.

1. Initially, the state machine is in state 0.

2. The state machine changes state when the input is a 1 and remains in its current state when its input is a
0.

3. The machine accepts an input string iff it has an odd number of ones. We can prove this by a simple
induction proof. I’ll skip the proof in the lecture to keep the lecture within an hour. I’ll include the proof
here as a simple example of how such a proof is structured. We will construct many induction proofs about
automata during the semester.

4. Proof that the machine accepts a string iff it has an odd number of ones (by induction on the length of
the input string):
a. Induction Hypothesis: The machine is in state 0 after reading an even number of ones and in state 1

after reading an odd number of ones.
b. Base case: the input string is empty.

The machine starts in state 0. The empty string contains zero ones. Zero is an even number. Thus, the
machine is in state 0 after reading the empty string, and this satisfies the induction hypothesis.

c. Induction step: assume for inputx, prove for inputxa wherex ∈ {0, 1}∗, anda ∈ {0, 1}. There
are four cases to consider:

x has an even number of ones anda = 0:
After readingx, the machine is in state 0 by the induction hypothesis. Thus, after readingx0, the ma-
chine is in state 0 because the machine remains in its current state when the input is0. Furthermore,
x0 has the same number of1’s asx. By the case assumption,x has an even number of1’s; thus,
so doesx0 because they both have the same number of ones. Therefore, the induction hypothesis is
maintained.
x has an even number of ones anda = 1:
After readingx, the machine is in state 0 by the induction hypothesis. Thus, after readingx1, the
machine is in state 1 because the machine changes its current state when the input is1. Furthermore,
x1 has one more1 x. By the case assumption,x has an even number of1’s; thus,x1 has an odd
number because it has one more. Again, the induction hypothesis is maintained.
The two cases whenx has an odd number of ones: The arguments are similar to those above and I
omit them here.

2

0

n

f

R S

D Q

step

acceptnδin

reset

Figure 2: A Generic Sequential Decision Machine

C. Figure 2 shows the generic implementation of a finite state machine as a sequential circuit.

1. The flip-flop from figure 1 has been replaced byn flip-flops. The circuit has2n states.

2. The XOR-gate from figure 1 has been replaced by the oval labeledδ. Recall that we can implement an
arbitrary boolean function using AND, OR, and NOT gates (NAND gates alone are sufficient). Thus, we
can implement any next state function as a logic circuit.

3. The circuit hasm inputs. Thus, the input alphabet has2m symbols.

4. We can implement a finite state machine with fewer than2n states or fewer than2m symbols by defining
Σ to be a subset of the2m possible input values andQ to be a subset of the2n flip-flop states. Then, we
design the circuit forδ such that for anya ∈ Σ and anyq ∈ Q, δ(q, a) ∈ Q. The value ofδ for othera 6∈ Σ
or q 6∈ Q doesn’t matter – we say that such inputs are “not-allowed” and that such states are “unreachable.”

II. Representing Finite Automata with Transition Graphs

A. The Pieces of a Transition Graph

1. States are represented by circles

a. Accepting states are represented by double circles:

b. Non-accepting states are represented by single circles:

c. We often write the name of the state inside the circle:R

Note that the language accepted by the finite state machine is independent of the names that we choose
for the states. Accordingly, we sometimes omit the names for states because the reader can make up
names if s/he wants them to be named, and it won’t affect the language that we are talking about.

2. Transitions are represented by directed arcs (i.e. arrows)
a,b,g

a. The direction of the arrow shows the source and destination state for the transition.
b. The label is a list of symbols from the input alphabet. The transition is made if the next symbol of

the input string is one of the symbols listed in the label.
c. The labels of the outgoing arc from a state must partition the input alphabet. In other words, each

symbol of the alphabet must appear in the label for exactly one outgoing arc from each state.

3. The initial state is indicated by an incoming arc with no source:

B. Advantages (and Disadvantages) of Transition Graphs

1. They provide visual intuition for what the finite state machine does.

2. They are simpler than circuit diagrams:
a. They show the behaviour of the machine rather than how that behaviour is implemented.
b. Thus, there can be many different ways to implement the same transition diagram. We could use

different logic circuits. If we study a computing technology that doesn’t use gates and flip-flops, we can
still use the finite state machine model and state transition diagrams if artifacts in this new technology
behave as finite state machines.

3

c. Accordingly, we will use transition diagrams and the formal mathematical models for most things in
this class. I will show the hardware versions occasionally, when I think that that view provides some
extra intuition or a simpler explanation. When I do, I’ll connect it right back to the more traditional
formal automata approach very quickly. If HW makes you yawn, then you can daydream for a few
minutes while I draw a schematic, and tune back in when I resume talking about sets, tuples, and
graphs.

3. However, they are impractical for large finite state machines.
a. For example, a circuit with 100 flip-flops (a relatively small circuit) has over1030 states – it’s physi-

cally impossible to draw the state transition diagram.
b. Likewise, the lexical analyser for a programming language such as Java may have hundreds of states.

The state transition diagram is unwieldy, but it can still be helpful to understand that the lexical analyser
is a collection of finite state machines.

III. Formally Defining Finite Automata

A. The ingredients of a finite automaton
1. An input alphabet,Σ, a set of symbols.

2. A set of states,Q.

3. A transition function:δ : Q× Σ → Q.

4. An initial state,q0.

5. A set of accepting states:F ⊆ Q.

B. We can combine these to make a formal, mathematical description of a finite automaton
1. The combination is a “tuple”, that just means lump them all together.

2. The tuple is:(Q,Σ, δ, q0, F).
3. Let M be the finite automaton(Q,Σ, δ, q0, F). The language accepted byM is writtenL(M) and is

defined below:
a. Defineδ̂ : Q× Σ∗ → Q recursively as shown below:

δ̂(q, ε) = q

δ̂(s a) = δ(δ̂(q, s), a)

The first line says that the machine does not change state in response to the empty string. The second
line handles non-empty strings. Letx be a string of lengthn with n > 0. Thenx can be divided into
two parts,s anda wheres is the firstn − 1 characters ofx anda is the last character. Note that ifx
is of length 1, thens is empty. Now, we computêδ(q, s) which tells us what state the machine reaches
after processing the firstn−1 characters ofx. Call this stateq′. We then computeδ(q′, a) to determine
the state that the machine reaches after processing the last character ofx. This gives us the state that
the machine reaches when starting in stateq and then processing stringx.

b. Strings is in languageL(M) iff δ̂(q0, s) ∈ F .

4. We say that this is a formal, mathematical definition because everything in the definition has a well-
defined mathematical meaning: sets, functions, sequences, and tuples.

C. Finite automata, transition graphs, and sequential decision circuits all recognize the same set of languages.

1. Proof that finite automata and sequential decision circuits are equivalent.
a. LetC be a sequential decision circuit withm input wires andn flip-flops. This circuit has2m possible

input values, and2n possible states. Thus, we defineΣ = {0 . . . 2m − 1} andQ = {0 . . . 2n − 1}
according to a binary interpretation of the values stored in the flip-flops. The combinational logicδ
computes a function fromQ× Σ to Q. This is theδ for the finite automaton. Similarly, we define

F = {q ∈ Q|f(q)}

4

Finally, we defineq0 such to be the state 0. LetM = (Q, Σ, δ, q0, F). There is a straightforward proof
by induction that a strings is in L(M) iff the corresponding sequence of inputs brings the sequential
decision machine to a state where theaccept output is true. The induction hypothesis is that after
processing a string of lengthk, M and the circuit are in corresponding states.

b. Let M = (Q, Σ, δ, q0, F). We construct a sequential decision machine withm = dlog2 |Σ|e input
wires andn = dlog2 |Q|e flip-flops. We map the symbols inΣ onto the integers{0 . . . |Σ| − 1}.
and likewise map the symbols inQ onto the integers{0 . . . |Q| − 1}. Now, the transition functionδ
maps to a function from{0, 1}n × {0, 1}m to {0, 1}n. We can decompose this inton functions from
{0, 1}n × {0, 1}m to {0, 1}. In the September 7 lecture, we showed that two-input AND and OR gates
and inverters are sufficient to implement any boolean function. Thus, this mapped version ofδ can
be implemented. Likewise, we can implement logic forf that recognizes states mapped fromF . A
straightforward induction proof shows that the circuit that we’ve just described recognizes the same
language asM . The induction hypothesis again is that after processing a string of lengthk, M and the
circuit are in corresponding states.

2. Omitted because I need to print these notes.

IV. Examples of Regular Languages

A. A language that inputs pairs of binary numbers and accepts if the first number is greater than or equal to the
second.

B. A simplistic spelling checker – see figure 3.

1. Requires that every word has at least one vowel or the letter ’y ’.

2. Enforces the ‘i ’ before ‘e‘ except after ‘c ’ rule.

3. Requires every ‘q’ to be followed by a ‘u’ and another vowel.

4. Accepts many words that are not English words, such as “asdfghjkl ”.

5. Rejects some perfectly fine English words, such as “cwm”, “ foreign ”, and “qat ”.

5

u

β, c,q,

β, c,q,y
β, a,e,o,u,y

β, a,i,o,

c

c

i

e

i

u,y
a,i,o,u,y a,o,e

c

c

iβ

β 0 E

a,e,o
u,y

β,

E

Qe q

A

Q

q

e

q

q

e

e

a,e,i,
o,u,y

c

a,i,o,u
A

A

β = b,d,f,g,h,j,
k,l,m,n,p,r,
s,t,v,w,x,z

u,y

u

u = β, a,e,i,o,y

Figure 3: A Simplistic Spelling Checker

6

