- No late homework accepted.
- This is an optional homework assignment. I will compute your final grade by taking the highest six scores from the seven homework assignments.
- Do any five of the six problems below. Do not turn-in solutions for more than five problems.

1. (20 points): Kozen, Homework 9, problem 4. Prove that an r.e. set is recursive iff there exists an enumeration machine that enumerates it in increasing order.
2. (20 points): Kozen, Miscellaneous exercise, problem 111.

One of the following sets is r.e. and the other is not. Which is which? Give proof for both.
(a) $\{M \mid L(M)$ contains at least 481 elements $\}$
(b) $\{M \mid L(M)$ contains at most 481 elements $\}$
3. (20 points): Kozen, Miscellaneous exercises, problem 37, parts a, b, i and j. Which of the following sets are regular and which are not? Give justification.
(a) $\left\{a^{n} b^{2 m} \mid n \geq 0\right.$ and $\left.m \geq 0\right\}$
(b) $\left\{a^{n} b^{m} \mid n=2 m\right\}$
(c) $\left\{a^{n} b^{m} \mid n \geq m\right.$ and $\left.m \leq 481\right\}$
(d) $\left\{a^{n} b^{m} \mid n \geq m\right.$ and $\left.m \geq 481\right\}$
4. (20 points): Kozen, Miscellaneous exercises, problem 76.

Consider the set

$$
a^{*} b^{*} c^{*}-\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

the set of all strings of a 's followed by b 's followed by c 's such that the number of a 's, b 's and c 's are not all equal.
(a) Give a CFG for the set, and prove that your grammar is correct.
(b) Give an equivalent PDA.
5. (20 points): Kozen, Miscellaneous exercises, problem 106.

Is it decidable, given $M \# y$, whether the Turing machine M ever writes a nonblank symbol on its tape when run with input y ? Why or why not?
6. (20 points): Kozen, Miscellaneous exercises, problem 108.

Tell whether the following problems are decidable or undecidable. Give proof.
(a) Given a TM M and a string Y, does M every write the symbol $\#$ on input y ?
(b) Given a CFG G, does G generate all strings except ϵ ?
(c) Given an LBA M, does M accept a string of even length?
(d) Give a TM M, are there infinitely many TMs equivalent to M ?

