
CpSc 421 Homework 7 Solutions

1. (20 points): Kozen, Homework 9, problem 4.
Prove that an r.e. set is recursive iff there exists an enumeration machine that enumerates it in increasing order.

Solution: Let Σ be a finite alphabet, and letA ⊆ Σ∗ be an r.e. set. To order the elements ofA, we will say that
x ≺ y if |x| < |y|. If x andy have the same length, we will order them lexographically:

ε = ε
c · x ≺ d · y, if c ≺ d and|x| = |y|
c · x � d · y, if c � d and|x| = |y|
c · x ≺ d · y, if c = d andx ≺ y

I’m assuming that there is some ordering of the symbols inΣ – we can always make one up if none was
provided.
Now, I’ll present the requested proof.

A is recursive⇒ there exists an enumeration machine that enumerates it in increasing order.
Assume thatA is recursive. Then, there exists a total TM that acceptsA. Let MA be such a TM. We
now construct an enumeration machine,MA,E that generates each string inΣ∗ in order, tests each
string withMA, and ifMA accepts,MA,E writes the string on its output tape. BecauseMA is total,
MA,E never gets stuck looping while testing a string.

A is recursive⇐ there exists an enumeration machine that enumerates it in increasing order.
We consider two cases,A is finite andA is infinite. If A is finite, thenA is regular, which means there
is a finite automaton that accepts it. We can build a TM,M whose finite state control implements this
finite automaton. Upon reaching the end of the input string,M moves to the accepting state,t, if its
state is an accepting state of the finite automaton. Otherwise,M rejects.
If A is infinite, then it has no largest element. Let’s say we have an enumeration machine,MA,E

that enumeratesA. We now build a TMMA that acceptsA. MA has an extra track onto which it
copies its input – lety be the input string. It then runsMA,E . Each timeMA,E outputs a string,u,
MA comparesu with y. If u = y, MA accepts. Otherwise, ifu � y, thenMA rejects. Because
MA,E outputs strings in increasing order, we know that once it has output a string that followsu in
the ordering, it will never outputy. BecauseA is infinite, we know thatMA,E will eventually output
a string that is greater thany. Thus,MA is total and acceptsA. This proves thatA is recursive.

2. (20 points): Kozen, Miscellaneous exercise, problem 111.
One of the following sets is r.e. and the other is not. Which is which? Give proof for both.

(a) {M | L(M) contains at least 481 elements}
Solution: This set is r.e.

As in question1, we can order all strings inΣ∗. Now, we build a machineM ′ that simulatesM for
one step on string 0 (i.e.ε); then for one step on string 0 and one step on string 1; then for one step on
string 0, one step on string 1, and one step on string 2; and so on. WheneverM accepts a string,M ′

increments a counter and drops the string from the set that it is simulating. IfM rejects a string, then
M just drops the string from the set that it is enumerating. If the counter forM ′ reaches 481, then we
know thatM has accepted481 different strings, andM ′ accepts.
To complete the argument, I need to show thatM ′ is guaranteed to terminate ifL(M) contains
at least 481 elements. IfL(M) contains 481 elements, letA481 be the 481smallestelements of
L(M) according to the ordering we’ve defined for strings. LetK be the number by the ordering of
strings for the largest element ofA481. Let N be the maximum number of steps thatM takes to
accept any string inA481. MachineM ′ will have simulatedM for at leastN steps after a total of
((N + K)2 + (N + K))/2 simulation steps. Thus,M ′ will accept after a finite number of steps.
Note thatM ′ loops ifM does not accept at least 481 strings. Thus,L(M) is r.e. but not recursive.



(b) {M | L(M) contains at most 481 elements}
Solution: This set is not r.e.

Let B = {M | L(M) contains at most 481 elements}. LetM be an arbitrary TM. IfL(M) = ∅, then
M ∈ B. On the other hand, ifL(M) = Σ∗, thenM 6∈ B. Thus,B is nonmontone. By the second
form of Rice’s theorem, we conclude thatB is not r.e.
For those that think that was too easy (or aren’t sure how to apply Rice’s theorem), here’s a bit
more explanation. First, consider why our approach from part (a) doesn’t work here. Consider some

machineM that accepts any stringw if |w| > 10101010
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moves – and that’s a lot of moves. More to the point, we never know when we’ve simulatedM for
enough moves to rule out the possibility that it accepts more strings.
Showing that the construction from part (a) doesn’t work, isn’t a proof thatB isn’t r.e. – perhaps
we could find some other construction that would showB is r.e. We can take the basic idea of our
construction to create a proof. In particular, we can reduce∼HP to testing membership inB. Let’s
say that we have some Turing machineM and some stringx. We want to know ifM loops onx (i.e.
is M#x ∈∼HP ). We build a TMM ′ that does the following:

• When run on inputy, M ′ erasesy and writesx onto it’s tape.

• M ′ then performs the actions ofM .

• If M halts,M ′ acceptsy.

(Does this sound familiar? Take a look at the solution to HW5, Q. 4. I used exactly the same con-
struction there. Once you understand a few reductions, you can apply them to a very wide range of
problems.). Note thatM ′ accepts no strings ifM loops on inputx, andM ′ accepts an infinite number
of strings ifM halts on inputx.
We now ask ifM ′ ∈ B, and observe thatM ′ ∈ B ⇔ M#x ∈∼HP . Thus, we can solve the
complement of the halting problem by determining that a machine accepts at most 481 strings. The
complement of the halting problem is not r.e., thereforeB is not r.e.
At this point, you might object, and say that a very similar argument shows that the halting problem
can be reduced to testing membership in

{M | L(M) contains at least 481 elements}

Indeed it can. The halting problem is r.e., but not recursive. We can give a definite “yes” answer to
the question of whether or notM halts on inputx, but we can’t give a definite “no” in all cases where
M does not halt.

3. (20 points): Kozen, Miscellaneous exercises, problem 37, parts a, b, i and j.
Which of the following sets are regular and which are not? Give justification.

(a) {anb2m | n ≥ 0 andm ≥ 0}



Solution: Regular.
This set is generated by the regular expressiona∗(bb)∗.

(b) {anbm | n = 2m}
Solution: Not regular.

For the sake of contradiction, assume that the set is regular. Letk be its pumping lemma constant.
Now, consider the stringa2kbk, and force the demon to pump in the string ofa’s. Any pumping will
change the number ofa’s while leaving the number ofb’s unchanged. This produces a string not in
the set. This contradicts the assumption that the set is regular.

(c) {anbm | n ≥ m andm ≤ 481}
Solution: Regular.

We create a DFA with states{pi, qj , r} for 0 ≤ i, j, k ≤ 481. Statep0 is the initial state. Upon reading
ana, statepi transistions topi+1 (for i ≤ 480); statep481 transistions to statep481, and all other states
transition to stater. Upon reading ab, statespi andqi transistion toqi−1 (for 0 < i ≤ 481); and state
p0, q0, andr transition tor. All states are accepting except for stater.
This machine makes sure that the input is of the forma∗b∗. It also counts the number ofa’s and makes
sure that there are no moreb’s thana’s. If the number ofa’s is greater than or equal to481, then it
makes sure that there are most 481b’s.

(d) {anbm | n ≥ m andm ≥ 481}
Solution: Not regular.

For the sake of contradiction, assume that the set is regular. Letk be its pumping lemma constant.
Now, consider the stringakbk, and force the demon to pump in the string ofb’s. We can pump the
string to increase the number ofb’s while leaving the number ofa’s unchanged. This produces a string
not in the set, contradicting the assumption that the set is regular.

4. (20 points): Kozen, Miscellaneous exercises, problem 76.
Consider the set

a∗b∗c∗ − {anbncn | n ≥ 0}

the set of all strings ofa’s followed by b’s followed by c’s such that the number ofa’s, b’s andc’s are not all
equal.

(a) Give a CFG for the set, and prove that your grammar is correct.

Solution: The grammar,G,
S → U | V
U → AXC0 | XBC0

V → A0BY | A0Y C
A → aA0

A0 → aA0 | ε
B → b B0

B0 → b B0 | ε
C → C C0

C0 → cC0 | ε
X → aX b | ε
Y → b Y c | ε

Proof: LetW = a∗b∗c∗ − {anbncn | n ≥ 0}.
W ⊆ L(G): Let w = aibjck ∈ W ; thus,i 6= j or j 6= k. First, consider the case thati > j. I’ll

show that,S 1−→
G

U
1−→
G

AXC0
∗−→
G

w. The first two steps follow directly from the definition of



G. Becausei > j, we can writew asai−jajbjck. It is straightforward to show that:

A
1−→
G

aA0
i−j−1−→

G
ai−jA0

1−→
G

ai−j

X
j−→
G

ajXbj 1−→
G

ajbj

and C0
k−→
G

ckC0
1−→
G

ck

Thus,S 2−→
G

AXC0
i+k+3−→

G
aibjck = w. This shows thatw ∈ L(G) as required.

The arguments wheni < j, j > k, andj < k are similar.

W ⊇ L(G): Let w ∈ L(G). First consider the case thatS
1−→
G

U
1−→
G

AXC0
∗−→
G

w. It is
straightforward to show that for anyα, β, γ ∈ {a, b, c}∗,

A
i+1−→
G

α ⇒ (α = ai) ∧ (i > 0)

X
j+1−→
G

β ⇒ (β = ajbj) ∧ (j ≥ 0)

and C0
k+1−→
G

γ ⇒ (γ = ck) ∧ (k ≥ 0)

Thus,w = ai+jbjck with i + j > j (becausei > 0). This means thatw ∈ L(a∗b∗c∗), and
¬∃n. w = anbncn. Thusw ∈ W .

The three other cases whereS
2−→
G

XBC0
∗−→
G

w, S 2−→
G

A0BY
∗−→
G

w, andS
2−→
G

A0Y C
∗−→
G

w
are similar. Thus,w ∈ L(G) ⇒ w ∈ W as required.

(b) Give an equivalent PDA.

Solution: Let w be the input string to the PDA. My PDA uses its finite state control to verify that
w ∈ L(a∗b∗c∗). It also makes a non-deterministic choice to determine whether it will show that the
number ofa’s is different than the number ofb’s or that the number ofb’s is different than the number
of c’s.
If it chooses to show that the number ofa’s is different than the number ofb’s, it pushes a marker
on the stack for eacha that it reads. It then pops a marker off the stack for eachb that it reads. If it
encounters the top-of-stack marker when the next input symbol is ab, it has shown that there are more
b’s thana’s, and moves to a state from which it just checks that the rest of the string is of the form
b∗c∗. If there is still at least one marker on the stack the next input symbol is ac or the end of the
string has been reached, the machine has shown that there are morea’s thanb’s, and moves to a state
from which it checks that the rest of the string is of the formc∗. If the top-of-stack symbol is exposed
when it reads the firstc, then the machine rejects.
The operation of the machine when it chooses to show that the number ofb’s is different than the
number ofc’s is similar. It first scans past anda’s in the input, pushes a marker for eachb it reads, and
pops a marker for eachc it reads. The details are analagous to those in the previous case.

5. (20 points): Kozen, Miscellaneous exercises, problem 106.
Is it decidable, givenM#y, whether the Turing machineM ever writes a nonblank symbol on its tape when run
with inputy? Why or why not?

Solution: Decidable.
Let

B = {M#y | Turing machineM writes a nonblank when run ony}

To make the machine a valid Turing machine, I will assume that whenM reads the left tape endmarker,`,
it writes a` and moves to the right.



I’ll show that if a machine writes a nonblank symbol (other than preserving the left endmarker), it must do
so within a bounded number of steps. Thus, it is sufficient to simulate the machine for that many steps – if
it hasn’t written a blank by then, it never will.

Consider a machine that has performedn steps without writing a writing a nonblank. Then, all squares
to the left of the tape head must hold the blank symbol (except for the` on the leftmost square). I’ll
now break the proof into two cases depending on whether or notM reads every symbol ofy. I will only
consider what we need to do ifM only writes blanks. IfM ever writes a blank in this procedure, we’re
done.

M does not read all ofy:
Let n = |y| andk = |Q|, whereQ is the set of states ofM . There aren possible positions forM ’s
read write head. IfM hasn’t written a non-blank, there aren possible tape strings, corresponding
to the rightmost position that the head has reached. For each combination of head position and tape
string,M can be in any ofk possible states. Thus, there aren2k unique configurations whereM has
not read all ofy.
We can simulateM for n2k+1 steps. If there are nonblank symbols on the tape at the end of this, then
M must have been in the same configuration twice (or elseM wrote a nonblank, and we’re done).
This means thatM is looping without writing any nonblank symbols.M will never write a nonblank
symbol, and we’re done.

M reads all ofy:
As described above, we can simulateM for n2k + 1 steps. IfM has not written a nonblank and all
the tape is all blanks, the only thing that matters is the distance of the head from the left endmarker.
We simulateM for up tok steps.M must visit the same state twice. Letq be such a state. If the
second time thatM is in stateq the head is at the same location or to the right of where it was the
first timeM was in stateq, thenM is looping and will continue moving to the right forever. On the
other hand, ifM has moved overall to the left, then it will continue heading left until it reaches the
left endmarker.
M can reach the left endmarker in one ofk states. Because the tape is entirely filled with blanks, we
can determine whatM does in from each of thesek configurations. In particular, ifM returns to the
left endmarker, it must do so withink moves. Thus, we can figure out all possible behaviours within
k2 steps.

Putting these together, we get that aftern2k+1 steps,M has either erased its input orM is in a loop where
it never writes a nonblank. IfM erases its input, thenM is n + 1 squares from the left endmarker when it
finishes doing so. IfM ever returns to the left endmarker, it must do so within(n+1)k moves (otherwise,
we can detect a loop withink moves). IfM returns to the left endmarker, the tape is now completely filled
with blanks, and we can determine all possible behaviours withink2 steps.

Thus, we can simulateM on inputy for n2k + (n + 1)k + k2 + 1 steps. If within this number of stepsM
writes a nonblank, we can answerM ∈ B. Otherwise, we answerM 6∈ B.

6. (20 points): Kozen, Miscellaneous exercises, problem 108.
Tell whether the following problems are decidable or undecidable. Give proof.

(a) Given a TMM and a stringy, doesM every write the symbol# on inputy?

Solution: Undecidable.
Let B = {M#y | M writes# when run ony}. Let M be a Turing machine andx be a string. I’ll
show how to reduceM#x ∈ HP to testing membership inB.
First, I note that givenM andx we can check to see if# is in the tape alphabet ofM . If so, we just
rename it to another symbol. Thus, I will assume that# is not in the tape alphabet ofM .
Now, I’ll construct a machine,M ′ that when run with inputy does the following:

• Erasey and writex on the tape.

• Perform the operation ofM .



• If M halts, then write a# on the tape and accept.
By construction,M never writes a# on the tape. Thus,M ′ writes a# on the tape iffM halts when
run with inputx. Thus, I’ve reduced the halting problem to testing whether or not a TM ever writes a
# on its tape. Thus, this problem is undecidable.
Note: saying that this problem is undecidable and saying thatB is not recursive are equivalent. I’ll
note thatB is r.e.; thus, this problem is semi-decidable. Simply simulateM with input x. If M ever
writes a#, then accept. IfM halts without writing a# reject. OtherwiseM loops on inputx, and
our machine forB will loop when run withM#x.

(b) Given a CFGG, doesG generate all strings exceptε?

Solution: Undecidable.
We saw (Kozen lecture 35) that the question of whether or notL(G) = Σ∗ is undecidable by the
VALCOMPS construction. We note thatε is not a valid computational history by the construction
used by Kozen (or in class).
GivenM andx, let GM,x be a CFG that accepts all strings that arenot valid computational histories
for M run with inputx. We can derive aG′ such thatL(G′) = L(GM,x) = {ε} – for example, we
could use the construction from Kozen chapter 21 (to produce a Chomsky Normal Form grammar) or
exploit the fact that CFLs are closed under intersection with regular languages, andL(∼ε) is regular.
The grammarG′ generates all strings exceptε iff M does not halt on inputx. Thus, it is undecidable
whether or not a CFG generates all strings exceptε.

(c) Given an LBAM , doesM accept a string of even length?

Solution: Undecidable.
In HW6, Q1, we showed that the language emptiness problem for LBAs is undecidable by a reduction
from VALCOMPS. In particular, given a TMM and a stringx, when can derive an LBAMM,x, such
thatL(MM,x) is non-empty iffM halts when run with inputx.
We construct an LBAM ′

M,x that has one more symbol in its input alphabet thanMM,x. Let^ be this
symbol. We constructM ′

M,x so that

L(M ′
M,x) = {x | ∃w.(x = w ^∗) ∧ x ∈ L(MM,x)}

MachineM ′
M,x first checks to make sure that its input is of the formα∗

M,x ^∗ whereαM,x matches
any symbol in the input alphabet ofMM,x. (with MM,x modified to treat̂ as the right endmarker).
In then replaces the leftmost̂ symbol (if any) with a the right endmarker forMM,x (e.g.a), moves
its head to the left endmarker, and thereafter operates like machineMM,x.
If M halts on inputx, thenM ′

M,x accepts strings with an arbitrary number of̂ symbols at the
end. Thus,M ′

M,x accepts strings of even length. On the other hand, ifM does not halt onx then
L(M ′

M,x) = ∅. Hus,M ′
M,x accepts a string of even length iffM halts on inputx.

(d) Give a TMM , are there infinitely many TMs equivalent toM?

Solution: Dedicable.
This is a “trivial” property of the r.e. sets. GivenanyTuring machine, there an an infinite number of
equivalent Turing machines.
We say that two Turing machines,M1 andM2 are equivalent iff for every possible input string,x, M1

accepts iffM2 accepts;M1 rejects iffM2 rejects; andM1 loops iff M2 loops.
Let M = (Q,Σ,Γ, δ,`,�, s, t, r) be a Turing machine withQ = {q1, q2, . . . , qk}. For anyi > 0, let
Mi = (Qi,Σ,Γ, δi,`,�, s, t, r) with Qi = Q ∪ {qk+1, qk+2, . . . , qk+i}, and

δi(q, c) = δ(q, c), if q ∈ Q
= δ(qk, c), if q ∈ Qi −Q

Note that there are no transitions into statesqk+1 and beyond. Thus, they don’t affect the computation.
Nevertheless, they do result in a different TM. Thus,L(Mi) = L(M), and we can create an infinite



number of TMs this way. We conclude that for any TMM , there are an infinite number of TMs
equivalent toM .
You might think that it’s somehow “cheating” to add inaccessible states and say that the resulting
machine is different from but equivalent toM . I could have added these states so that the new machine
would start in stateqk+i and work its way down to stateqk+1 and then transition to states and act
like M after that. If that is still to trivial, I could makeM perform some complicated set of actions
that end up leaving the tape unchanged, and then transition to states. While such constructions might
help you feel that the machine has a more unique identity, we don’t need to resort to such obscurity.
Two TMs are identical iff they have the same states, alphabets, transition functions, and special states
and symbols. Thus, my simple construction produces distinct TMs.
We could have defined “equivalent” to mean “accept the same set” (thus treating rejection and looping
as equivalent). The same construction works.


