CpSc421 Homework 7 Solutions

1. (20 points): Kozen, Homework 9, problem 4.
Prove that an r.e. set is recursive iff there exists an enumeration machine that enumerates it in increasing order.

Solution: Let X be a finite alphabet, and lgt C >* be an r.e. set. To order the elementsipfve will say that
x < yif |z| < |y|. If z andy have the same length, we will order them lexographically:

= ¢
< d-y, ife<dand|z|=]y|
= d-y, ifc>dand|z|=]y|
< d-y, fe=dandz <y

o
88 8

I’'m assuming that there is some ordering of the symbols iknwe can always make one up if none was
provided.
Now, I'll present the requested proof.

A is recursive=- there exists an enumeration machine that enumerates it in increasing order.
Assume thatd is recursive. Then, there exists a total TM that acceptket M 4 be such a TM. We
now construct an enumeration machidé, r that generates each string Xt in order, tests each
string with M 4, and if M 4 acceptsM 4 g writes the string on its output tape. Becaudg is total,
M 4. never gets stuck looping while testing a string.

A is recursive< there exists an enumeration machine that enumerates it in increasing order.

We consider two cased, is finite andA is infinite. If A is finite, thenA is regular, which means there
is a finite automaton that accepts it. We can build a TWiwhose finite state control implements this
finite automaton. Upon reaching the end of the input strivigmoves to the accepting state|f its
state is an accepting state of the finite automaton. Othenlisejects.

If A is infinite, then it has no largest element. Let's say we have an enumeration mathine,
that enumeratea. We now build a TMM 4 that acceptsd. M4 has an extra track onto which it
copies its input — ley be the input string. It then run&/4 . Each timeM 4 g outputs a stringy,
M4 comparesy with y. If w = y, M4 accepts. Otherwise, if > y, thenM 4 rejects. Because
M, g outputs strings in increasing order, we know that once it has output a string that fallows
the ordering, it will never outpuj. Because! is infinite, we know that\/ 4 z will eventually output
a string that is greater than Thus,M 4 is total and acceptd. This proves thatl is recursive.

2. (20 points): Kozen, Miscellaneous exercise, problem 111.
One of the following sets is r.e. and the other is not. Which is which? Give proof for both.

(@) {M | L(M) contains at least 481 elemehts

Solution: This setis r.e.
As in questionl, we can order all strings ii*. Now, we build a machiné/’ that simulates\/ for
one step on string O (i.e); then for one step on string 0 and one step on string 1; then for one step on
string 0, one step on string 1, and one step on string 2; and so on. Whédesecepts a string)/’
increments a counter and drops the string from the set that it is simulatiifj réfects a string, then
M just drops the string from the set that it is enumerating. If the countéviforeaches 481, then we
know thatM has accepteds1 different strings, and/’ accepts.
To complete the argument, | need to show théat is guaranteed to terminate ff(M) contains
at least 481 elements. (M) contains 481 elements, letys; be the 481smallestelements of
L(M) according to the ordering we've defined for strings. Eebe the number by the ordering of
strings for the largest element df;s;. Let N be the maximum number of steps that takes to
accept any string iM4g;. Machine M’ will have simulatedM for at leastN steps after a total of
(N + K)? + (N + K))/2 simulation steps. Thus{’ will accept after a finite number of steps.
Note thatM’ loops if M does not accept at least 481 strings. THUS\/) is r.e. but not recursive.

(b) {M | L(M) contains at most 481 elemehts

Solution: This set is not r.e.
Let B = {M | L(M) contains at most 481 elemehtd.et M be an arbitrary TM. IfL (M) = 0, then
M € B. On the other hand, iL.(M) = ¥*, thenM ¢ B. Thus,B is nonmontone. By the second
form of Rice’s theorem, we conclude th&tis not r.e.
For those that think that was too easy (or aren’t sure how to apply Rice’s theorem), here’s a bit
more explanation. First, consider why our approach from part (a) doesn’t work here. Consider some
10101010101010
machine) that accepts any string if |w| > 101" . Clearly,M ¢ B. On the other
hand, we won't figure this out until we've simulatéd for roughly

0101

N[=

101

moves — and that’s a lot of moves. More to the point, we never know when we've similafed
enough moves to rule out the possibility that it accepts more strings.
Showing that the construction from part (a) doesn’t work, isn't a proof thasn't r.e. — perhaps
we could find some other construction that would shBvis r.e. We can take the basic idea of our
construction to create a proof. In particular, we can reduél to testing membership i3. Let’s
say that we have some Turing machihkeand some string. We want to know ifM loops onz (i.e.
is M#x e~HP). We build a TMM' that does the following:

e When run on inputy, M’ eraseg and writesr onto it's tape.

e M’ then performs the actions af.

e If M halts,M’ acceptgy.
(Does this sound familiar? Take a look at the solution to HW5, Q. 4. | used exactly the same con-
struction there. Once you understand a few reductions, you can apply them to a very wide range of
problems.). Note thalt/’ accepts no strings it/ loops on inputz, andM’ accepts an infinite number
of strings if M halts on inputc.
We now ask ifM’ € B, and observe that/’ € B & M+#x €~HP. Thus, we can solve the
complement of the halting problem by determining that a machine accepts at most 481 strings. The
complement of the halting problem is not r.e., therefBris not r.e.
At this point, you might object, and say that a very similar argument shows that the halting problem
can be reduced to testing membership in

{M | L(M) contains at least 481 elemehts

Indeed it can. The halting problem is r.e., but not recursive. We can give a definite “yes” answer to
the question of whether or ndf halts on inputz, but we can’t give a definite “no” in all cases where
M does not halt.

3. (20 points): Kozen, Miscellaneous exercises, problem 37, parts a, b, i and j.
Which of the following sets are regular and which are not? Give justification.

(@ {a"b*™ | n > 0andm > 0}

Solution: Regular.
This set is generated by the regular expresaidib)*.

(b) {a"b™ | n =2m}
Solution: Not regular.
For the sake of contradiction, assume that the set is regulark betits pumping lemma constant.
Now, consider the string?*v*, and force the demon to pump in the stringusf. Any pumping will

change the number afs while leaving the number df's unchanged. This produces a string not in
the set. This contradicts the assumption that the set is regular.

(€) {a™b™ | n > mandm < 481}

Solution: Regular.
We create a DFA with stat€®;, ¢;, r} for 0 < ¢, j, k < 481. Statep, is the initial state. Upon reading
ana, statep; transistions tg, 1 (for i < 480); statepss; transistions to stateys;, and all other states
transition to state. Upon reading &, state; andg; transistion tag;_; (for 0 < i < 481); and state
Do, qo, @andr transition tor. All states are accepting except for state
This machine makes sure that the input is of the fafi¥. It also counts the number afs and makes
sure that there are no mobis thana’s. If the number ofe’s is greater than or equal #81, then it
makes sure that there are most 4&l

(d) {a"b™ | n > m andm > 481}

Solution: Not regular.
For the sake of contradiction, assume that the set is regulark betits pumping lemma constant.
Now, consider the string®b*, and force the demon to pump in the stringbist We can pump the
string to increase the numberig$ while leaving the number af's unchanged. This produces a string
not in the set, contradicting the assumption that the set is regular.

4. (20 points): Kozen, Miscellaneous exercises, problem 76.
Consider the set
a*b e —{a"b"c" | n >0}
the set of all strings ofi's followed by b’s followed by ¢’s such that the number afs, b's andc¢’s are not all
equal.

(a) Give a CFG for the set, and prove that your grammar is correct.

Solution: The grammarg,

Uu|v
AXCy | XBC,
ApBY | A)YC
CLAO

aAo | €

b By

bBo | €

CCy

CCO ‘ €
aXble

bY cle

<R AT gL <oy
e e e A A A A

Proof: LetWW = a*b*c* — {a"b"c" | n > 0}.
W C L(G): Letw = a’b'cF € W, thus,i # j or j # k. First, consider the case that> j. Il

show thatS > U —+ AXCy — w. The first two steps follow directly from the definition of

G. Becausé > j, we can writew asa’~/a’b’c”. Itis straightforward to show that:

1 . 1 o
al jA()TaZJ

1 i—j—
A—zrado

Iyl X s aipd
X?aXb ?ab]

k k 1 k
and OO?C CO?C

Thus,S -2+ AXCy 55 aibick = w. This shows thaiw € L(G) as required.
The arguments wheh< j, j > k, andj < k are similar.

W 2 L(G): Letw € L(G). First consider the case that — U —» AXCy — w. Itis
straightforward to show that for any, 3, v € {a,b, c}*,
i+1

Az a = (a=d)A(i>0)

XI5 = (B=alb)A(j>0)
and Co iy = (y=c)A(k>0)

Thus,w = a'*7b/c* with i 4+ j > j (because > 0). This means thaty € L(a*b*c*), and
=dn. w = a™b"c". Thusw € W.

The three other cases whefe2» X BCy —» w, S —» AgBY — w,andS —2» AgYC —» w
are similar. Thusw € L(G) = w € W as required.

(b) Give an equivalent PDA.

Solution: Let w be the input string to the PDA. My PDA uses its finite state control to verify that
w € L(a*b*c*). It also makes a non-deterministic choice to determine whether it will show that the
number ofa’s is different than the number éfs or that the number df's is different than the number
of ¢’s.

If it chooses to show that the number @§ is different than the number @éfs, it pushes a marker
on the stack for each that it reads. It then pops a marker off the stack for datifat it reads. If it
encounters the top-of-stack marker when the next input symbad, i Bas shown that there are more
b’s thana’s, and moves to a state from which it just checks that the rest of the string is of the form
b*c*. If there is still at least one marker on the stack the next input symbotisrahe end of the
string has been reached, the machine has shown that there are’srithi@n’s, and moves to a state
from which it checks that the rest of the string is of the farmlf the top-of-stack symbol is exposed
when it reads the first, then the machine rejects.

The operation of the machine when it chooses to show that the numbé&r isfdifferent than the
number ofc’s is similar. It first scans past ands in the input, pushes a marker for edciireads, and
pops a marker for eachit reads. The details are analagous to those in the previous case.

5. (20 points): Kozen, Miscellaneous exercises, problem 106.
Is it decidable, giverd! #y, whether the Turing machin® ever writes a nonblank symbol on its tape when run
with inputy? Why or why not?

Solution: Decidable.
Let
B = {M#+y | Turing machinel writes a nonblank when run ay}

To make the machine a valid Turing machine, | will assume that wiieeads the left tape endmarket,
it writes a-- and moves to the right.

I'll show that if a machine writes a nonblank symbol (other than preserving the left endmarker), it must do
so within a bounded number of steps. Thus, it is sufficient to simulate the machine for that many steps — if
it hasn’t written a blank by then, it never will.

Consider a machine that has performedteps without writing a writing a nonblank. Then, all squares

to the left of the tape head must hold the blank symbol (except foF-tba the leftmost square). [I'll

now break the proof into two cases depending on whether olhotads every symbol af. | will only
consider what we need to doff only writes blanks. IfAf ever writes a blank in this procedure, we're
done.

M does not read all of:
Letn = |y| andk = |Q|, whereQ is the set of states dff. There aren possible positions foM’s
read write head. I/ hasn’t written a non-blank, there arepossible tape strings, corresponding
to the rightmost position that the head has reached. For each combination of head position and tape
string, M can be in any of: possible states. Thus, there aré: unique configurations wher® has
not read all ofy.
We can simulaté/ for n?k+1 steps. If there are nonblank symbols on the tape at the end of this, then
M must have been in the same configuration twice (or géfserote a nonblank, and we're done).
This means thad/ is looping without writing any nonblank symbol7 will never write a nonblank
symbol, and we’re done.

M reads all ofy:
As described above, we can simulatefor n?k + 1 steps. IfM has not written a nonblank and all
the tape is all blanks, the only thing that matters is the distance of the head from the left endmarker.
We simulateM for up to k steps. M must visit the same state twice. Lgbe such a state. If the
second time thal/ is in stateq the head is at the same location or to the right of where it was the
first time M was in statey, thenM is looping and will continue moving to the right forever. On the
other hand, if\M has moved overall to the left, then it will continue heading left until it reaches the
left endmarker.
M can reach the left endmarker in oneko$tates. Because the tape is entirely filled with blanks, we
can determine what/ does in from each of thedeconfigurations. In particular, i#/ returns to the
left endmarker, it must do so withihmoves. Thus, we can figure out all possible behaviours within
k? steps.

Putting these together, we get that afiék + 1 steps,M has either erased its input df is in a loop where

it never writes a nonblank. i/ erases its input, thei is n + 1 squares from the left endmarker when it
finishes doing so. If/ ever returns to the left endmarker, it must do so within- 1)k moves (otherwise,
we can detect a loop withik moves). IfM returns to the left endmarker, the tape is now completely filled
with blanks, and we can determine all possible behaviours withiteps.

Thus, we can simulat&/ on inputy for n2k + (n + 1)k + k2 + 1 steps. If within this number of stegd
writes a nonblank, we can answkf € B. Otherwise, we answe¥/ ¢ B.

6. (20 points): Kozen, Miscellaneous exercises, problem 108.
Tell whether the following problems are decidable or undecidable. Give proof.

(a) Givena TMM and a stringy, doesM every write the symbo}# on inputy?

Solution: Undecidable.
Let B = {M#y | M writes# when run ory}. Let M be a Turing machine andbe a string. Ill
show how to reducd/#ax € HP to testing membership iB.
First, | note that giver/ andx we can check to see # is in the tape alphabet @ff. If so, we just
rename it to another symbol. Thus, | will assume ##ds not in the tape alphabet 81 .
Now, I'll construct a machine}/’ that when run with inpug does the following:
e Erasey and writez on the tape.

¢ Perform the operation af/.

¢ If M halts, then write & on the tape and accept.

By construction, M never writes g# on the tape. Thusy/’ writes a# on the tape iffM halts when

run with inputz. Thus, I've reduced the halting problem to testing whether or not a TM ever writes a
onits tape. Thus, this problem is undecidable.

Note: saying that this problem is undecidable and sayingfBhist not recursive are equivalent. I'll
note thatB is r.e.; thus, this problem is semi-decidable. Simply simuldtevith inputz. If M ever
writes a#, then accept. 1f\/ halts without writing a# reject. Otherwisé/ loops on inputz, and

our machine forB will loop when run withM #x.

(b) Given a CFQZ, doesG generate all strings exceg?

Solution: Undecidable.
We saw (Kozen lecture 35) that the question of whether orlr{6t) = X* is undecidable by the
VALCOMPS construction. We note thatis not a valid computational history by the construction
used by Kozen (or in class).
Given M andz, let Gy, be a CFG that accepts all strings that mo¢valid computational histories
for M run with inputz. We can derive &’ such thatL(G’) = L(Gu) = {¢} — for example, we
could use the construction from Kozen chapter 21 (to produce a Chomsky Normal Form grammar) or
exploit the fact that CFLs are closed under intersection with regular languageb(-aayis regular.
The grammars’ generates all strings excegpiff M does not halt on input. Thus, it is undecidable
whether or not a CFG generates all strings exeept

(c) Given an LBAM, doesM accept a string of even length?

Solution: Undecidable.
In HW6, Q1, we showed that the language emptiness problem for LBAs is undecidable by a reduction
from VALCOMPS. In particular, given a TM/ and a stringz, when can derive an LBAZ,, ;, such
that L(M) is non-empty iffM halts when run with input.
We construct an LBAVI}, . that has one more symbol in its input alphabet théap .. Let— be this
symbol. We construc‘MM . SO that

LMy,) = A{z|3w(r=w—")ANz € L(My.)}

Machine)M), .. first checks to make sure that its input is of the faufy , —* wherea,,, matches
any symbol in the input alphabet 81, ... (with M}, , modified to treat— as the right endmarker).
In then replaces the leftmost symbol (if any) with a the right endmarker fét, ., (€.9.-), moves
its head to the left endmarker, and thereafter operates like mathine.

If M halts on inputz, then M}, . accepts strings with an arbitrary number-of symbols at the
end. Thus,MM . accepts strings of even length. On the other hand/ itloes not halt orx then

L(My,) =0. Hus, M, , accepts a string of even length ¥ halts on inputs.

(d) Give a TMM, are there infinitely many TMs equivalent 1d?

Solution: Dedicable.
This is a “trivial” property of the r.e. sets. Givamy Turing machine, there an an infinite number of
equivalent Turing machines.
We say that two Turing machinek{; and/, are equivalent iff for every possible input string,A
accepts iffMs acceptsj\; rejects iff M, rejects; and\/; loops iff M5 loops.
LetM = (Q,%,T,6,,0,s,¢,7) be a Turing machine witl) = {q1, g2, ..., qr }. Foranyi > 0, let
]V-[l = (Ql) Ev Fa 6i7 '_v Da S, tv 7") with Ql = Q U {Qk—‘rlv qk4-25 - - - »Qk—s-i}: and

51'((15 C) = 5(‘1; C)a If q S Q
= qr,c), fge@i—Q

Note that there are no transitions into stajes; and beyond. Thus, they don't affect the computation.
Nevertheless, they do result in a different TM. Thii§);) = L(M), and we can create an infinite

number of TMs this way. We conclude that for any TM, there are an infinite number of TMs
equivalent taM .

You might think that it's somehow “cheating” to add inaccessible states and say that the resulting
machine is different from but equivalentid. | could have added these states so that the new machine
would start in statey; and work its way down to statg,; and then transition to stateand act

like M after that. If that is still to trivial, | could maké/ perform some complicated set of actions
that end up leaving the tape unchanged, and then transition tesiéigile such constructions might

help you feel that the machine has a more unique identity, we don’t need to resort to such obscurity.
Two TMs are identical iff they have the same states, alphabets, transition functions, and special states
and symbols. Thus, my simple construction produces distinct TMs.

We could have defined “equivalent” to mean “accept the same set” (thus treating rejection and looping
as equivalent). The same construction works.

