
CpSc 421 Homework 6 Solutions

1. (25 points): Kozen HW 9, Question 3
Prove that the emptiness problem for linear bounded automata is undecidable.

Solution: I will show thatVALCOMPS can be solved by a LBA. As shown in Kozen, lecture 35 (eq. 35.1),

VALCOMPS(M,x) = ∅ ⇔ M does not halt onx.

Let M0 = (Q0,Σ0,Γ0,`0,�0, δ0, s0, t0, r0) be a Turing machine. Define an LBAM = (Q,Σ,Γ,`,a
, δ, s, t, r) with

Σ = Γ0 × (Q0 ∪ {◦})
Γ = {`,a,#} ∪ Σ ∪ ((Σ ∪ {#})× {[]′})

In other words,̀ anda are the left and right endmarkers forM . The symbol(c, q) indicates that the
symbol on the tape forM is c, the read/write head forM0 is at this square, andM0 is in stateq. The
symbol(c, ◦) indicates that the symbol on the tape forM0 is c and the read/write head forM0 is not at this
square. Tape symbols forM can be marked with a′ which I will use below. The tape symbol# is used to
separate successive configurations ofM .
Rather than listing out all of the states and the details of the state transition relation, I will describe the
operations ofM , in each case making it clear that they could be performed by an LBA.

• Initially, M reads its input tape an makes sure that it has the right structure to describe a valid compu-
tation. In particular, in makes sure that the input tape has the form#w0#w1#w2# . . .#wk# where
eachwi is a string in(Γ0 × (Q0 ∪ {◦}))∗, eachwi contains exactly one symbol inΓ0 × {◦}, w0

encodes the initial configuration forM0 with input x, andwk encodes a configuration forM0 in an
accepting or rejecting state. As chapter 35 of Kozen, these restrictions are a regular language. The
LBA has a finite state control. Thus it can test these conditions on a single pass over the tape. If the
tape fails any of these conditions the LBA rejects. Otherwise, it returns to the left endmarker and
continues with the steps described below.

• M now marks the leftmost# and the first# to the right of the leftmost one with′s. M then returns
to the left endmarker.

• M now checks that successive configurations as described on its input tape correspond to legal moves
of M0. M maintains its tape with two squares marked with′s; these mark corresponding tape locations
of two consecutive positions.M finds the left marked square and remembers the tape symbol forM0

in M ’s own finite state. It moves one square to the right.
If this square has the tape head marker forM0, thenM memorizes the tape symbol and state forM0

symbol along with the tape symbols ofM0 for the previous and following square inM ’s own finite
store.M then moves to the right to find the marked square in the next configuration and checks that
that the three tape symbols starting with the marked one correspond to the successor byδ0 of the three
that it has memorized in its finite store. If not,M rejects. Otherwise,M moves the′ markers for both
configurations to the squares immediately after the groups of three.M also remembers if the state of
M0 in the successor configuration is a final state (i.e.t0 or r0).
Otherwise, the square after the marked one does not encode the tape head marker forM0. In this
case,M just scans to the marked square in the successor configuration and confirms that it matches
the symbol from the predecessor configuration. If not,M rejects. Otherwise,M moves the′ marks
one to the right for each configuration.
If M reaches its own right endmarker,a, M recalls from its finite store whether or notM0 was in a
terminal state in the final configuration. If so,M accepts, otherwise,M rejects.

This machine accepts a string, iff it describes an terminating computation ofM on inputx. If M0 ter-
minates on inputx, the corresponding computation history is accepted byM . Otherwise, the language
accepted byM is empty. The halting problem for Turing machines is undecidable. Thus, the language
emptiness problem for LBAs is undecidable as well.

2. (25 points): Kozen HW 10, Question 1
Show that neither the set

TOTAL def= {M | M halts on all inputs}
nor its complement is r.e.

Solution: I start from the observation that the halting problem is r.e. but is not co-r.e. LetM be a TM andx be
an input toM . I’ll now construct a new TM,M ′ such that on inputy, M ′ simulatesM running on input
x for |y| steps. IfM does halt within|y| steps, thenM ′ will go into an infinite loop. Otherwise,M ′ will
accepty. By this construction,M ′ is total iff M does not halt on inputx. This reduces the complement of
the halting problem,∼HP , to TOTAL. We know that∼HP is not r.e. Thus, TOTAL in not r.e. either.

A similar construction works to show that TOTAL is not co-r.e. This time, we make a TMM ′ when run
with input y first simulatesM running on inputx. If M halts, thenM ′ acceptsy (whatevery happens to
be). Otherwise,M ′ simulatesM forever. By this construction,M ′ is total iff M halts on inputx. This
reduces the halting problem,HP , to TOTAL. We know thatHP is r.e. but not co-r.e. Thus, TOTAL in
not co-r.e. either.

Note: I first tried to solve this using Rice’s theorem, but Rice’s theorem applies to the language recognized
by the TM, not to the TM itself. Thus, I gave up on that approach and looked for a reduction argument
instead.

3. (25 points): Kozen HW 10, Question 3
Show that it is undecidable whether the intersection of two CFLs is non-empty.

Solution: As suggested by the hint in the textbook, I’ll turn this into a variation of VALCOMPS. Given a
TM M with input stringX, I’ll ask whether#α0#αR

1 #α2#αR
3 # . . .#αn encodes a valid configuration,

whereαi is gives the configuration in reverse wheni is odd in in normal order wheni is even.

The basic idea is to use two PDAs. The first PDA checks that each even numbered configuration is followed
by the correct configuration. It does this by pushing the even numbered configuration onto the stack and
then popping each symbol off while checking the symbols of the subsequent odd numbered configuration.
Thus, this PDA checks thatαR

1 is the valid successor toα0, thatαR
3 is the valid successor toα2 and so on.

The second PDA checks that each odd numbered configuration is followed by the correct even numbered
configuration. In other words, it verifies thatα2 is the valid successor toαR

1 and so on. If both PDAs accept
and the final configuration is a final configuration forM , then the input string encoded a valid computation
of M on inputx.

I’ll assume that the input string has the valid structure for VALCOMPS (i.e. that each configuration has
exactly one symbol that marks the state ofM in that configuration, etc.). As pointed out in my solution to
problem 1, this is a regular language. It can be incorporated into either or both PDAs.

Now, I’ll describe the operation of the first PDA. It reads each symbol inα2i. If the symbol does not
include the marker for the read/write head ofM , the PDA just pushes the symbol onto its stack. If it does
include the marker for the read/write head, then the PDA memorizes the value of the previous symbol (on
the top of the stack), the current symbol, and the state forM in its finite state, and reads the next symbol.
The PDA can now simulate the move ofM and pushes the appropriate symbols onto its stack. If the PDA
determines thatM enters a final state, the PDA remembers this in its own state, and all states of the PDA
from here on are accepting states (unless the PDA discovers an error elsewhere in the configuration).

When the PDA reaches the# symbol, the stack holds the next configuration ofM . The PDA readsαR
2i+1

and pops these symbols off of the stack as it goes, comparing the symbol it reads with the symbol on the
top of the stack at each move. If they agree, the PDA continues, otherwise, it enters into a permanently
rejecting state. If the PDA pops all of the symbols off of its stack in this maneer, thenαR

2i+1 is the valid
successor ofα2i. The PDA verifies that the next input symbol is a# and then repeats this whole process
(to verify thatα2i+2 is properly followed byα2i+3.

The operation of the second PDA is similar.

If both PDAs accept, then#α0#αR
1 #α2#αR

3 # . . .#αn encodes a valid computation. The language
accepted by a PDA is a CFL. Thus, the language accepted by both of these PDAs is the conjunction of two
CFLs. This language is non-empty iffM halts on inputx. The halting problem is undecidable. Thus, the
language non-emptiness problem for the intersection of two CFLs is undecidable.

Note: my construction made no use of non-determinism. Thus, the language non-emptiness problem for
the intersection of two DCFLs is undecidable as well.

4. (25 points): Kozen Miscellaneous Exercises, Question 103.
A nondeterministic Turing machine is on ewith a multiple-valued transition relation. Give a formal definition of
these machines. Argue that every nondeterministic TM can be simulated by a deterministic TM.

Solution: A non-deterministic TM is a 9-tuple,M = (Q,Σ,Γ,`,�,∆, s, t, r), whereQ is a set of states;Γ is
a finite tape alphabet;Σ ⊂ Γ is a finite input alphabet;̀ is the tape left-endmarker;� ∈ Γ is the blank
symbol;∆ ⊆ (Q × Γ) × (Q × Γ × {L,R}) is the state transition relation; ands, t, andr are the start,
accept, and reject states respectively. In particular,((q, c), (q′, c′, d)) ∈ ∆ means that whenM is in state
q reading symbolc, M can enter stateq′, write c′ on the tape, and move the read/write head one square in
directiond. For any particularq andc, there may be multiple choices forq′, c′, andd.

To simulate a non-deterministic TM,Mnd, with a deterministic TM,Md, I’ll use the usual universal
machine construction (as in Kozen, chapter 31). However, I’ll add a symbol,# to the tape alphabet of
Md. and keep track of each possible configuration ofMnd on the tape ofMd. Based on the construction
from Kozen, chapter 31,Md will have three tracks, with the top track holding the description ofMnd, the
middle track holding the contents of the tape forMnd for each possible configuration, and the bottom track
marking the tape head position and state ofMnd, again for each possible configuration. Thus, the middle
track will look like:

w1#w2# . . .#wk

if there are currentlyk configurations ofMnd being simulated.

For each simulation step,Md will simulate each configuration ofMnd for one step. Letwi denote such
a configuration. If fromwi, Mnd can move to an accepting configuration, thenMd accepts. Ifwi hasm
possible successors, thenMd will make m − 1 copies ofwi at the end of its tape and update the original
one and them− 1 copies to reflect each possible move ofm. If wi has no successors, or if all successors
enter the rejecting state, thenMd eraseswi from its tape. If a successor ofwi moves beyond the# at the
end ofwi, thenMd shifts all symbols to the right ofwi one tape square to the right and appends a bland ot
wi.

MachineMd accepts if there is any sequence of choices forMnd such thatMnd accepts. Thus,Md

simulatesMnd.

Note that it was crucial forMd to simulate each possible configuration ofMnd at each step. In particular,
Md can’t just simulate one of the non-deterministic choices until it accepts or rejects and then consider
the others if the first choice rejects. This is because some choices may lead to looping, while a different
choice would accept. IfMd followed the looping choice without considering the others,Md would fail to
terminate, even thoughMnd would accept.

