
CpSc 421 Homework 5 Due: Nov. 23

1. (20 points): Do Kozen, Homework 8, problem 1.
Describe a TM that accepts the set{an|n is a power of 2}. Your description should be at the level of the de-
scriptions in Kozen Lecture 29 of the TM that accepts{ww|w ∈ Σ∗} and the TM that implements the sieve of
Eratosthenes. In particular, do not give a list of transitions.

Solution: My machine has a tape alphabet of{a, b,`,�}; the input alphabet is{a}. My machine makes
successive sweeps across the tape replacing every othera that it encounters with ab. If it completes a
sweep with only onea on the tape, then it accepts;1 = 20. Otherwise, if it encounters an odd number of
a’s in a sweep, then it rejects (all other powers of 2 are even). If it encounters noas, then it rejects;0 is
not a power of 2. This is enough detail to get a full-credit answer. I’ll provide some more details for those
who are using this to study.
My machine has states{s, t, r, 1, e, o, back}.
In states:

The machine is making a left-to-right scan and hasn’t encountered anya symbols yet.
If reading à or b, the machine writes the same symbol as it read and moves one square to the right,

and remains in states.
If reading ana, the machine writes ana, moves one square to the right, and enters state1.
If reading an�, the machine completed the scan without having encountered ana. The machine

rejects.
In state1:

The machine is making a left-to-right scan and has encountered exactly onea symbol so far.
The machine cannot encounter a`.
If reading ana, The machine writes ab on the tape, moves to the right, and enters statee.
If reading ab, the machine writes ab, moves one square to the right, and remains in state1.
If reading a�, the machine completed the scan having encountered exactly onea. The machine

accepts.
In statee:

The machine is making a left-to-right scan and has encountered an even number ofa symbols (greater
than zero).
The machine cannot encounter a`.
If reading ana, The machine writes ab on the tape, moves to the right, and enters stateo.
If reading ab, the machine writes ab, moves one square to the right, and remains in statee.
If reading a�, the machine completed the scan having encountered an even number ofa’s (and more

than zero). It has erased half of them and is ready to start the next scan. The machine writes a�,
moves one square to the left, and enters stateback .

In stateo:
The machine is making a left-to-right scan and has encountered an odd number ofa symbols (greater
than one).
The machine cannot encounter a`.
If reading ana, The machine writes ana on the tape, moves to the right, and enters statee.
If reading ab, the machine writes ab, moves one square to the right, and remains in stateo.
If reading a�, the machine completed the scan having encountered an odd number ofa’s (and more

than one). The machine rejects.
In stateback :

The machine is making a right-to-left scan looking for the left endmarker.
If reading ana or b, The machine writes the same symbol on the tape that it read, moves one square

to the left, and remains in stateback .

If reading a`, The machine writes à on the tape, moves one square to the right, and enters states
to begin the next left-to-right scan.

The machine cannot encounter a�.

2. (30 points): Do Kozen, Homework 8, problem 2.
A linear bounded automaton(LBA) is exactly like a one-tape Turing machine, except that the input string
x ∈ Σ∗ is enclosed in left and right endmarkers,` anda, which may not be overwritten, and the machine
is constrained to never move left of thènor right of thea. It may read and write all it wants between the
endmarkers.

(a) (8 points) Give a rigorous, formal definition of deterministic, linearly bounded automata, including a
definition of configurations and acceptance. Your definition should begin as follows: “Adeterministic
linearly bounded automaton (LBA)is a 9-tuple

M = (Q,Σ,Γ,`,a, δ, s, t, r),

whereQ is a finite set ofstates, . . . ”

Solution: A deterministic linearly bounded automaton (LBA)is a 9-tuple

M = (Q,Σ,Γ,`,a, δ, s, t, r),

whereQ is a finite set ofstates; Γ is the tape alphabet,Σ ⊂ Γ is the input alphabet,̀,a∈ Γ− Σ are
the left and right tape endmarkers respectively;δ : (Q × Γ) → (Q × Γ × {L,R}) is the transition
function; ands, t, andr are the start, accept, and reject states respectively.
As with a Turing machine,δ(q,`) ∈ Q× {`} × {R}; likewise,δ(q,a) ∈ Q× {a} × {L}. In other
words, the machine may not move left beyond the left endmarker,`, nor may it move right beyond
the right endmarker,a, nor may it erase either of the endmarkers. We define configuration of an LBA
in direct analogy with configurations for a TM. Finally, we defineL(M) as

L(M) = {x ∈ Σ∗ | ∃n. M reaches a configuration aftern moves where it is in an accepting state}

(b) (5 points) Let M be a linear bounded automaton with state setQ of sizek and tape alphabetΓ of sizem.
How many possible configurations are there on inputx, |x| = n?

Solution: Including the endmarkers, there aren + 2 tape squares. Then in the middle can each take on
any ofm values. The tape head can be at any of thesen + 2 squares, and the machine may be in any
of k states. Thus, there arek(n + 2)mn possible configurations.

(c) (7 points)Argue that the halting problem for deterministic linearly bounded automata is decidable.

Solution: Because the machine can be in at mostk(n + 2)mn different configurations, it is sufficient to
simulate the machine fork(n + 2)mn steps. If the machine terminates within this number of moves,
then it halts. If not, it must have returned to a configuration that it has seen before; the machine is in
a loop; and it will never terminate.
I’ll add that an LBA can be simulated by a TM by a construction very similar to that for a universal
TM.

(d) (10 points)Prove by diagonalization that there exists a recursive set that is not accepted by any LBA.

Solution: The main idea is to follow the construction used to show that the halting problem for Turing
machines is undecidable by any Turing machine to show that the halting problem for LBAs is un-
decidable by any LBA. The one catch is that in the construction for TMs, we constructed a Turing
machineM , that given some inputN , wroteN#N on its tape and then ran the hypothetical TM that
acceptsP#x if machineP halts on inputx. The problem is that an LBA can’t write anything longer
than its input its tape. We consider instead the set:

Z = {M | LBA M does not halt when run with inputM}

The setZ is recursive. A Turing machine with inputM can writeM#M on its tape and then run the
machine described above for determining whether or not LBAM halts with inputM . If M halts with
inputM , the TM rejects; otherwise it accepts. This TM is total, thusZ is recursive.
I’ll now show by diagonalization thatZ is not accepted by any LBA. For the sake of contradiction,
assume thatM is an LBA that acceptsZ. I’ll now construct a machineM ′ with the same input and
tape alphabet asM , and add one more state,q. Transitions ofM to statea are replaced inM ′ with
transitions to stateq. Once in stateq, M ′ loops (e.g. in stateq, M ′ moves to the right unless it is
reading the right endmarker, in which case it moves to the left, staying in stateq, and always writing
the same symbol that it read).
What happens if we runM ′ with the description ofM ′ for its input? MachineM ′ will run M . On
the other hand, ifM accepts, thenM ′ will accepts and halt as well. But,M accepting means thatM ′

does not halt when run with inputM ′, but accepting causesM ′ to halt. Thus,M cannot accept. IfM
rejects, thenM ′ will enter stateq and loop. But,M rejecting means thatM ′ halts when run with input
M ′, butM ’s rejecting causesM ′ to halt. Thus,M cannot reject. Finally, ifM loops, thenM ′ loops
as well, which means thatM ′ is in Z. But M ′ fails to acceptM ′. All cases lead to a contradiction.
This disproves our assumption that there is an LBAM that acceptsZ. Thus,Z is recursive set that is
not accepted by any LBA.

3. (20 points): I mentioned in class that we can construct a Turing machine that addresses its tape as if it were
memory. In this problem, you’ll show me how to do it.

Consider a Turing machine with tape alphabet{0, 0′, 1, 1′,�,`}. Start with a configuration where the tape is of
the form:

0k010k110k21 . . . 0kn1�ω

We can interpret this tape as storing the sequence of integersk0, k1, . . .kn. Describe a Turing machine that
starts in stateq1 and ends in stateq2 after replacingkn with kkn

. For example, if the tape is

0001011000001000000001010001�ω

when the machine is in stateq1, the machine will do its thing and reach stateq2 with the tape holding

000101100000100000000101000001�ω

You should specify your machine as a labeled state transition diagram like the ones that I’ve presented in class.

This operation corresponds to reading from memory.

Solution: Figure 1 shows my solution. I omitted arcs for transitions that will never occur for valid inputs. For
brevity, I wrotec1, c2, . . . ck → (•, d) to indicate that if the current tape symbol isc1, c2, . . . or ck, the
machine writes the same symbol that it read and moves in directiond. I wrote•′ to indicate that it replaces
a0 with a0′ or a1 with a1′.

First, my machine finds the end of the string of numbers by moving to the left until it encounters a non-
blank symbol (stateq1), and then moving to the right until it encounters a blank (statep1). The machine
then moves to the beginning of the rightmost number of the string (statesp2 andp3). Assuming that this
isn’t the only number on the tape, the machine marks the leftmost symbol of the number with a′ (the
transition from statep5 to statep6, I’ll handle the case of a tape with only one number at the end, that’s
what statep4 is for). In statep6, the machine moves to the left end of the tape, and marks the first digit of
the leftmost number with a′ (the transition from statep7 to p8). At this point, the machine has the leftmost
symbol of the first an last numbers on the tape marked with a′.

The machine will continue to work with two marked symbols. The right marker counts digits in the
rightmost number, while the left marker moves over a complete number for each0 symbol of the rightmost
number (statesp7 . . .p11). Once it reaches the end of the rightmost number, the machine copies the
currently marked number to the end of the tape (statesp12 . . . p14).

1 (1, R)

(, R)

(, L)0, 1 (, R)0, 1

0, 1 (’, R)

(1, L)1 (, R)

(0, L)0

(, L)

(, R)0, 1,

1 (1, R)

(, R)0

(, L)0, 1

0’ (0, R)(1, R)1’

(1, R)1’

(, R)0, 1

(, R)0, 1

(, L)

(1, L)

(, L)0, 1 (, L)0, 1

1’ (1, L)

(0, L)1 (1, R)

q1

p2

p5 p6
0, 1 (’, L)

p9

p7 p8

0, 1 (’, L)
p10

p3 p4 q2

p12

p11

p1

p13

p14
0’ (0’, R)

0’ (0’, R)

Figure 1: A Turing machine for reading from memory

Now, back to the case where the tape only has one number. Then, it can only reference itself, which means
that this number must encode0 for the input to be valid. If the rightmost number is preceded by the left
endmarker (i.e., there is only one number on the tape), then the machine checks that this number is zero
(which, ironically, means that it consists of a single1 symbol). This is the transition from statep3 to state
p4. The machine writes one more1 onto the tape. Now the tape holds two numbers, both of which have
the value zero.
Figure 2 shows pseudo-code corresponding to the machine. I haven’t included tests for invalid inputs:

4. (30 points): Do Kozen, Homework 9, problem 2.
Prove that it is undecidable whether two given Turing machines accept the same set. (This problem is analogous
to determining whether two givenPASCAL programs are equivalent.)

Solution: I will show that this problem is undecidable by reducing the halting problem for empty input to it.
Let M be a Turing machine andx be a string for which we want to know ifM halts when run with input
x. I will construct two other Turing machines,M1 andM2 such thatL(M1) = L(M2) iff M halts when
run with inputx. M1 acceptsΣ∗. It is straightforward to constructM1. WhenM2 is run with inputy, M2

performs the following actions

• M2 erasesy and writesx onto its tape.
• M2 performs the actions ofM .
• If M reaches its accept or reject state,M2 accepts.

Note thatM2 accepts iffM halts on inputx. ThusL(M2) = Σ∗ if M halts on inputx, andL(M2) = ∅
otherwise. In other words,L(M2) = L(M1) iff M halts.
Note: I wrote this solution restricting myself to the material that we had covered when HW5 was assigned.
Shortly after that, we learned about Rice’s theorem. This problem is very easy to solve using Rice’s
theorem:

LetM1 be any Turing machine. If we could solve language equivalence, we could test whether an
arbitrary Turing machine,M , recognized the same language asM1. ClearlyL(M1) = L(M1).

// find the right end of the string of numbers
q1: while(currentSymbol == �) move(�, L);
p1: while(currentSymbol != �) move(currentSymbol, R);

move(�, L);

// The rightmost number is of the form 0∗1.
// Move left past the 1, and then left past the 0’s

p2: move(1, L);
p3: while(currentSymbol == 0) move(0, L);

if(currentSymbol == `) { // only one number on the tape
move(`, R);
if(currentSymbol == 1) { // good, it encodes zero

move(1, R);
}

} else { // multiple numbers on the tape
// mark the leftmost digit of the rightmost number on the tape

p3: move(1, R);
p5: move(currentSymbol’, L);

// find the leftmost number on the tape
p6: while(currentSymbol ∈ {0, 1}) move(currentSymbol, L);

if(currentSymbol == `) move(`, R);

// Determine which number we are supposed to copy
while(true) {

// mark the first digit of the current number
p7: move(currentSymbol’, R);

// find the marked symbol of the rightmost number
p8: while(currentSymbol ∈ {0, 1}) move(currentSymbol, R);

if(currentSymbol == 1′) {
move(1, R);
break;

} else /* currentSymbol == 0′ */
move(0, L);

p9: move(currentSymbol’, L); // mark the next symbol over

// move left to the marked number
p10: while(currentSymbol ∈ {0, 1}) move(currentSymbol, L);

if(currentSymbol == 1′) move(1, R); // erase the marker
else {

move(0, R); // erase the marker
// now find the next number

p11: while(currentSymbol == 0) move(0, R);
if(currentSymbol == 1) move(1, R);

}
}

// copy the marked number to the end of the tape
while(true) {

p12: while(currentSymbol ∈ {0, 1}) move(currentSymbol, L);
if(currentSymbol == 1′) {

move(1, R);
break;

} else /* currentSymbol == 0′ */
move(0, R);

p14: while(currentSymbol ∈ {0, 1}) move(currentSymbol, R);
if(currentSymbol == �)

move(0, L); // append the 0
}

p13: while(currentSymbol ∈ {0, 1}) move(currentSymbol, R);
if(currentSymbol == �)

move(1, L); // append the final 1
}

q2: DONE

Figure 2: Pseudo-Code corresponding to the Turing machine from figure 1

We can also construct a Turing machineM2 such thatL(M2) 6= L(M1). For example, we can
construct machines that acceptΣ∗ and∅, and at least one of these must be different thanL(M1).
By Rice’s theorem, it is undecidable whether or not an arbitrary Turing machine recognizes the
same language asM1.

