NO LATE HOMEWORK ACCEPTED

1. ($\mathbf{3 0}$ points): Binary multiplication.

As in homework 2 , let $\Sigma=\{0,1\}^{3}$, i.e. the set of tuples consisting of three bits. For, $(a, b, c) \in \Sigma$, define

$$
\begin{aligned}
\operatorname{first}((a, b, c)) & =a \\
\operatorname{second}((a, b, c)) & =b \\
\operatorname{third}((a, b, c)) & =c
\end{aligned}
$$

We overload first, second, and third to strings as shown below:

$$
\begin{aligned}
\operatorname{first}(\epsilon) & =\epsilon \\
\operatorname{first}(x \cdot \mathrm{c}) & =\operatorname{first}(x) \cdot \operatorname{first}(\mathrm{c}) \\
\operatorname{second}(\epsilon) & =\epsilon \\
\operatorname{second}(x \cdot \mathrm{c}) & =\operatorname{second}(x) \cdot \operatorname{second}(\mathrm{c}) \\
\operatorname{third}(\epsilon) & =\epsilon \\
\operatorname{third}(x \cdot \mathrm{c}) & =\operatorname{third}(x) \cdot \operatorname{third}(\mathrm{c})
\end{aligned}
$$

For example, if $s=(0,0,0)(0,0,1)(0,1,0)(0,1,1)(1,0,0)(1,0,1)$, then first $(s)=000011$, second $(s)=$ 001100, and third $(s)=010101$. For $s \in\{0,1\}^{*}$, let binary (s) denote the binary value of s when the most significant bit is the first symbol of the string:

$$
\begin{aligned}
\operatorname{binary}(\epsilon) & =0 \\
\operatorname{binary}(0) & =0 \\
\operatorname{binary}(1) & =1 \\
\operatorname{binary}(x \cdot c) & =2 * \operatorname{binary}(x)+\operatorname{binary}(c)
\end{aligned}
$$

Let B denote the language of binary multiplication:

$$
B=\{w \mid \operatorname{binary}(\operatorname{third}(w))=\operatorname{binary}(\operatorname{first}(w)) * \operatorname{binary}(\operatorname{second}(w))\}
$$

(a) (10 points): Use the pumping lemma for regular languages to show that B is not regular.
(b) ($\mathbf{2 0}$ points): Is B context-free? Prove your answer.
2. (30 points): Let $\Sigma=\{a, b\}$. As usual, let $\# \mathrm{a}(x)$ denote the number of occurences of a in x, and let $\# \mathrm{~b}(x)$ denote the number of occurences of b. Show that each of the languages below is context-free:
(a) (10 points): $\{x \mid \# \mathrm{a}(x) \leq \# \mathrm{~b}(x)\}$
(b) (10 points): $\{x||\# \mathrm{a}(x)-\# \mathrm{~b}(x)|<3\}$
(c) (10 points): $\{x \mid(|\# \mathrm{a}(x)-\# \mathrm{~b}(x)| \bmod 3)=2\}$
3. (20 points): (Kozen, Miscellaneous Exercise 31)

Let $\Sigma=\{a, b, \$\}$. One of the two sets is regular and the other is not. Which is which? Prove your answers.
(a) (10 points): $\left\{w \mid \exists x, y \in\{a, b\}^{*} .(w=x y) \wedge(\# \mathrm{a}(x)=\# \mathrm{~b}(y))\right\}$
(b) (10 points): $\left\{w \mid \exists x, y \in\{a, b\}^{*} .(w=x \$ y) \wedge(\# \mathrm{a}(x)=\# \mathrm{~b}(y))\right\}$
4. (20 points): (Kozen, Miscellaneous Exercise 75)

Define a context-free grammar for regular expressions over an alphabet Σ. Your grammar should have the terminal symbols $\Sigma \cup\left\{\epsilon, \phi, \cdot,+,(),,{ }^{*}\right\}$. Your grammar should be unambiguous.

