
CpSc 421 Homework 4 Solution

1. (30 points): Binary multiplication.
As in homework 2, let Σ = {0, 1}3, i.e. the set of tuples consisting of three bits. For, (a, b, c) ∈ Σ, define

first((a, b, c)) = a
second((a, b, c)) = b

third((a, b, c)) = c

We overload first, second, and third to strings as shown below:

first(ε) = ε
first(x · c) = first(x) · first(c)

second(ε) = ε
second(x · c) = second(x) · second(c)

third(ε) = ε
third(x · c) = third(x) · third(c)

For example, if s = (0, 0, 0)(0, 0, 1)(0, 1, 0)(0, 1, 1)(1, 0, 0)(1, 0, 1), then first(s) = 000011, second(s) =
001100, and third(s) = 010101. For s ∈ {0, 1}∗, let binary(s) denote the binary value of s when the most
significant bit is the first symbol of the string:

binary(ε) = 0
binary(0) = 0
binary(1) = 1

binary(x · c) = 2 ∗ binary(x) + binary(c)

Let B denote the language of binary multiplication:

B = {w| binary(third(w)) = binary(first(w)) ∗ binary(second(w))}

(a) (10 points): Use the pumping lemma for regular languages to show that B is not regular.

Solution:
Rather than writing out the tuples, I’ll just write strings of equal length of x, y, and z, with the
interpretation that x represents the first component of the string for B; y represents the second, and
z represents the third. Thus, we want z = x ∗ y.
Let k be the demon’s choice for a pumping lemma constant. Let x = y = 0k10k, and z = 102k.
Thus, x, and y encode the value 2k and z encodes 22k, and z = x ∗ y as required. Force the demon to
pump in the first k symbols of the string. This leaves pumping leaves the values of x and y unchanged
but changes the value of z. Thus, pumping leads to strings where z 6= x ∗ y. This shows that B is not
regular.

(b) (20 points): Is B context-free? Prove your answer.

Solution:
This time, we need to be a little bit more subtle. Note that with our previous string, the demon could
break it up to obtain x′ = y′ = 0k−10i10i0k−1 which encodes 2k+i−1 and z′ = 10k − 20i00i0k−1 =
102(k+i−1) which encodes 22(k+i−1). Thus, z = x ∗ y.
The problem with the previous example was that it only has two fields of zeros, and the demon can
pump them separately. To overcome this, let x = y = 02k+210k10k1 which encodes 22(k+1)+2k+1+
1. Thus, x ∗ y should encode 24(k+1) + 2 ∗ 23(k+1) + 3 ∗ 22(k+1) + 2 ∗ 2k+1 + 1, which means that
z = 10k−110k110k−110k+11 (now you know why I put the number of leading zeros that I did in front
of z).

Now if we let the demon pump this string, it might pick some substrings that contain both zeros and
ones. While this may or may not produce a string that preserves the relationship that z = x ∗ y, it
will certainly make the multiplication problem more complicated – we don’t want the demon to win
by confusing us!
To preserve our sanity, we take advantage of the property that CFLs are closed under intersection
with regular languages. In particular, we restrict x and y to be of the form 0+100+10+1. Likewise,
we restrict z to be of the form 10+10+110+10+1. Each of these restrictions can be effected by
intersecting T with a regular language. Let T ′ be T intersected with the regular languages for these
restrictions on x, y, and z. If T is context-free, then T ′ must be context free as well.
To be fair, we must give the demon a chance to choose an new k. I’ll assume k > 1 to ensure that z has
the desired structure – we’re always allowed to present a longer string than the lower bound imposed
on us by the demon. My string consists of x = y = 02k+210k10k1 and z = 10k−110k110k−110k+11
as before. We now politely ask the demon to pump (x, y, z).
Let’s say the demon chooses abcde = (x, y, z), with |bd| ≥ 1 and |bcd| ≤ k, and claims that
abicdie ∈ B for any i ≥ 0. I’ll write x = α1β1γ1, where α = 02k+2, β = γ = 0k. By arguments
similar to those for part (a), the demon can’t choose b and d to both correspond to the α part of x, as
this would change the value encoded by z without changing the value for x or y. Likewise, the demon
can’t choose both b and d to be in β or γ, because with i = 2, x, y > 22k+2+|bd| and z < 24k+4+bd

which implies z 6= x ∗ y. Thus, b must correspond to a substring of α, and d must correspond to a
substring of β or γ.
Consider the case where d is a substring of β. Let x′ be the value for x corresponding to ab2cd2e, and
likewise for y′ and z′. We note that x′ encodes the value 22k+2+|d| + 2k+1 + 1. Thus the product of
xi and yi is

22(2k+2+|d|) + 2 ∗ 23k+3+|d| + 2 ∗ 22k+2+|d| + 22k+2 + 2 ∗ 2k+1 + 1

The corresponding string has the form 0∗10+0+10+10+10+10+1 which does not satisfy the restric-
tion that we put on z. Thus, this product is not in T ′. This shows that T ′ is not context-free. Therefore,
T is not context-free.

2. (30 points): Let Σ = {a, b}. As usual, let #a(x) denote the number of occurences of a in x, and let #b(x)
denote the number of occurences of b. Show that each of the languages below is context-free:

(a) (10 points): {x| #a(x) ≤ #b(x)}
Solution:

In the solution to HW3, we described a CFG for the language where #a(x) = #b(x). We modify this
grammar to recognize this language:

S → EaE | SS
E → ε | aEb | bEa | EE

The non-terminal E generates strings with an equal number of a and b symbols. Thus, EaE generates
strings with one more a than b. Finally, the production S → SS allows the generation of strings with
more than one excess a.

(b) (10 points):
{

x
∣∣∣ |#a(x)− #b(x)| < 3

}
Solution:

This time, I’ll modifify the PDA from my solution to HW3:

M = ({q1}, {a, b}, {⊥, a, b}, δ, q1,⊥, ∅)
δ = { (q1, a,⊥) → (q1, a ⊥)

(q1, a, a) → (q1, aa)
(q1, a, b) → (q1, ε)
(q1, b,⊥) → (q1, b ⊥)
(q1, b, b) → (q1, bb)
(q1, b, a) → (q1, ε)
(q1, ε,⊥) → (q1, ε)

}

To accept if |#a(x)− #b(x)| < 3, we can pop up to two a or b symbols off the stack after reading the
input string. I’ll do this by adding two more states, q2, and q3. Furthermore, I’ll add the transitions

(q1, ε, a) → (q2, ε)
(q1, ε, b) → (q2, ε)

(q2, ε,⊥) → (q1, ε)
(q2, ε, a) → (q3, ε)
(q2, ε, b) → (q3, ε)

(q3, ε,⊥) → (q1, ε)

(c) (10 points):
{

x
∣∣∣ (|#a(x)− #b(x)| mod 3) = 2

}
Solution:

In this case, I want to make sure that after reading the input string, that the number of symbols on the
stack has a remainder of three when divided by three. I’ll start with the machine from my solution to
HW3 as described above and remove the transition

(q1, ε,⊥) → (q1, ε)

I’ll add two states, q2, and q3 and the transitions:

(q1, ε, a) → (q2, ε)
(q1, ε, b) → (q2, ε)
(q2, ε, a) → (q3, ε)
(q2, ε, b) → (q3, ε)
(q3, ε, a) → (q1, ε)
(q3, ε, b) → (q1, ε)

This machine just pops symbols off the stack. The number of a’s or b’s left on the stack initially after
reading the input has a remainder of two when divided by three iff the machine uncovers the⊥ symbol
when moving to state q3. Thus, I add one more transition:

(q3, ε,⊥) → (q3, ε)

This machine accepts he specified language on emptyh stack.

3. (20 points): (Kozen, Miscellaneous Exercise 31)
Let Σ = {a, b, $}. One of the two sets is regular and the other is not. Which is which? Prove your answers.

(a) (10 points): {w| ∃x, y ∈ {a, b}∗. (w = xy) ∧ (#a(x) = #b(y))}
Solution:

This language is regular. In fact, it is the same as Σ∗.
Let n = |w|. For 0 ≤ i ≤ n, let xi be the first i symbols of w, and let yi be the last n − i symbols.
Thus, w = xiyi. We note that

#a(x0)− #b(y0) = 0− #b(w)
= −#b(w)

Likewise, #a(xn)− #b(yn) = #a(w). Furthermore,

#a(xi+1)− #b(yi+1) = (#a(xi)− #b(yi)) + 1

because with each step, either #a(xi) increases by one or #b(yi) decreases by one. Thus, #a(x#b(w)
) =

#b(y#b(w)
). Therefore, w is in the language. The choice of w was arbitrary. Thus, this language con-

tains all strings; it is Σ∗.

(b) (10 points): {w| ∃x, y ∈ {a, b}∗. (w = x$y) ∧ (#a(x) = #b(y))}
Solution:

This language is not regular. Let the demon chose k, and let w = ak$bk. Clearly, w is in this language
(e.g. let x = ak, and let y = $bk). Now, force the demon to pump the ak prefix. This will change the
number of a’s preceding the $, but the number of b’s will be unchanged. This produces a string that is
not in the language. Therefore, this language is not context free.

4. (20 points): (Kozen, Miscellaneous Exercise 75)
Define a context-free grammar for regular expressions over an alphabet Σ. Your grammar should have the
terminal symbols Σ ∪ {ε, φ, ·,+, (,), ∗}. Your grammar should be unambiguous.

Solution:

S → expr
expr → term ‖ expr + expr
term → factor ‖ term · factor

factor → kangaroo ‖ kangaroo∗

kangaroo → epsilon ‖ phi | (expr)
kangaroo → c, for each c ∈ Σ

