NO LATE HOMEWORK ACCEPTED

1. (30 points): (Question 2 from Kozen Homework 5)

Prove that the CFG:

$$
S \rightarrow a S b|b S a| S S \mid \epsilon
$$

generates the set of all strings of $\{a, b\}$ with equally many a 's and b 's. (Hint: Characterize elements of the set in terms of the graph of the function $\# b(y)-\# a(y)$ as y ranges over prefixes of x, as we did with balanced parentheses.)
2. (30 points): (Question 2 from Kozen Homework 6)

Construct a pushdown automaton that accepts the set of strings in $\{a, b\}^{*}$ with equally many a 's and b 's. Specify all transitions.
3. (40 points): Let T be the language over the alphabet $\{[, \mathcal{H}]$,$\} such that every [is followed by its matching$ H_{E}, and every \mathbb{H} is followed by its matching], and the total number of [symbols and the total number of] symbols in the string are the same. More formally, let

$$
\begin{aligned}
\operatorname{left}(\epsilon) & =0, & \operatorname{middle}(\epsilon) & =0, & \operatorname{right}(\epsilon) & =0, \\
\operatorname{left}(x[) & =\operatorname{left}(x)+1, & \operatorname{middle}(x[) & =\operatorname{middle}(x), & \operatorname{right}(x[) & =\operatorname{right}(x), \\
\operatorname{left}(x \mathrm{H}) & =\operatorname{left}(x), & \operatorname{middle}(x \mathrm{H}) & =\operatorname{middle}(x)+1, & \operatorname{right}(x \mathrm{H}) & =\operatorname{right}(x), \\
\operatorname{left}(x]) & =\operatorname{left}(x), & \operatorname{middle}(x]) & =\operatorname{middle}(x), & \operatorname{right}(x]) & =\operatorname{right}(x)+1
\end{aligned}
$$

A string x is in T iff

$$
\forall y, z . x=y z .(\operatorname{left}(y) \geq \operatorname{middle}(y)) \wedge(\operatorname{middle}(y) \geq \operatorname{right}(y)) \wedge(\operatorname{left}(x)=\operatorname{middle}(x)=\operatorname{right}(x))
$$

For example, the strings

$$
\left[\begin{array}{ll}
{[H]} & {[[\mathcal{H}[\mathcal{H}]][\mathcal{H}] H] \quad[\mathcal{H}[] H]}
\end{array}\right.
$$

are in T, but the strings

$$
[][\mathrm{HE}] \quad[] \quad[\mathrm{HE}[\mathrm{HE}] \mathrm{HE}[]]
$$

are not.
(a) ($\mathbf{2 0}$ points): Prove that T is not a context free language.
(b) (15 points): Give the grammars for two CFLs, A_{1} and A_{2} such that $T=A_{1} \cap A_{2}$.
(c) ($\mathbf{5}$ points): Are context free languages closed under complement? Give a short justification for your answer.

