NO LATE HOMEWORK ACCEPTED

1. (30 points): (Question 2 from Kozen Homework 5)

Prove that the CFG:

$$
S \rightarrow a S b|b S a| S S \mid \epsilon
$$

generates the set of all strings of $\{a, b\}$ with equally many a 's and b 's. (Hint: Characterize elements of the set in terms of the graph of the function $\# b(y)-\# a(y)$ as y ranges over prefixes of x, as we did with balanced parentheses.)

Solution:

Let A be the language of all strings over $\{a, b\}^{*}$ that have an equal number of a 's and b 's. I'll prove that $L(G) \subseteq A$ and $A \subseteq L(G)$ separately.
$L(G) \subseteq A$:
Let $w \in L(G)$. My proof in by induction on the number of steps, n, in the derivation of w.
Induction Hypothesis: $S \xrightarrow[G]{n} \alpha \Rightarrow(\# \mathrm{a}(\alpha)=\# \mathrm{~b}(\alpha))$
Base case - $n=0$:

$$
\begin{aligned}
& S \stackrel{0}{G} \alpha \\
& \Rightarrow \quad S \\
&(\# \mathrm{a}(\alpha)=0) \wedge(\# \mathrm{~b}(\alpha)=0) \\
& \# \mathrm{a}(\alpha)=\# \mathrm{~b}(\alpha)
\end{aligned}
$$

Induction step $-S \xrightarrow[G]{n} \alpha A \beta \xrightarrow[G]{\stackrel{1}{\longrightarrow}} \alpha \mu \beta$ There is a separate case for each production of $A \rightarrow \mu$ of G.

$$
A \rightarrow \mu \equiv S \rightarrow a S b:
$$

$$
\begin{aligned}
\# \mathrm{a}(\alpha \mu \beta) & =\# \mathrm{a}(\alpha a S b \beta), & & \text { case hypothesis: } \mu=a S b \\
& =\# \mathrm{a}(\alpha \beta)+\# \mathrm{a}(a S b), & & \text { properties of addition } \\
& =\# \mathrm{a}(\alpha S \beta)+1, & & \# \mathrm{a}(s)=0, \# \mathrm{a}(a S b)=1
\end{aligned}
$$

Likewise, $\# \mathrm{~b}(\alpha a S b \beta)=\# \mathrm{~b}(\alpha S \beta)+1$. $\# \mathrm{a}(\alpha S \beta)=\# \mathrm{~b}(\alpha S \beta)$ from which we conclude $\# \mathrm{a}(\alpha a S b \beta)=\# \mathrm{~b}(\alpha a S b \beta)$ as required.
$A \rightarrow \mu \equiv S \rightarrow a S b:$
The same argument as for the previous case (swapping a and b) applies here.
$A \rightarrow \mu \equiv S \rightarrow S S:$
As there are neither any a nor b terminals in S, we have $\# \mathrm{a}(\alpha S \beta)=\# \mathrm{a}(\alpha S S \beta)$, and likewise for the b 's. Thus, $\# \mathrm{a}(\alpha S S \beta)=\# \mathrm{~b}(\alpha S S \beta)$ follows directly from the induction hypothesis.
Thus, if $S \xrightarrow[G]{*} w$, then $\# \mathrm{a}(w)=\# \mathrm{~b}(w)$. Therefore, $w \in A$ and I conclude $L(G) \subseteq A$.
$A \subseteq L(G)$: Let $w \in A$. I'll prove $w \in L(G)$ by induction on w. As in the proof for the balanced parenthesis language, my proof uses "strong" induction - I use apply the induction hypothesis to strings that are shorter than $|w|-1$.
Induction Hypothesis - $((w \in A) \wedge(|w| \leq n)) \Rightarrow(w \in L(G))$:
Base step - $w=\epsilon$:
$S \rightarrow \epsilon$. Thus, $\epsilon \in L(G)$.
Induction step:
I break the proof into two cases as was done for the balanced parentheses language according to whether or not w can be divided into a non-empty prefix and suffix where each has an equal number of a 's and b 's.
case $\exists x, y \in \Sigma^{+} .(w=x y) \wedge(\# \mathrm{a}(x)=\# \mathrm{~b}(x)) \wedge(\# \mathrm{a}(y)=\# \mathrm{~b}(y))$:
Because $|x|<|w|$ and $x \in A$, the induction hypothesis applies, and I conclude $x \in L(G)$. Equivalently, $S \xrightarrow[G]{*} x$. Likewise, $S \xrightarrow[G]{*} y$. The production $S \rightarrow S S$ is in G. Thus,

$$
S \underset{G}{\underset{G}{1}} S S \xrightarrow[G]{*} x S \xrightarrow[G]{*} x y=w
$$

Thus, $w \in L(G)$.
case $\neg \exists x, y \in \Sigma^{+} .(w=x y) \wedge(\# \mathrm{a}(x)=\# \mathrm{~b}(x)) \wedge(\# \mathrm{a}(y)=\# \mathrm{~b}(y))$:
Because $\# \mathrm{a}(x)$ and $\# \mathrm{~b}(x)$ are integers and change by 0 or +1 as symbols are appended to x, I conclude:

$$
\forall x, y \in \Sigma^{+} .(w=x y) \Rightarrow((\# \mathrm{a}(x)>\# \mathrm{~b}(x)) \vee(\# \mathrm{a}(y)>\# \mathrm{~b}(y)))
$$

I'll assume that $\# \mathrm{a}(x)>\# \mathrm{~b}(x)$ for all prefixes of w with lengths in $\{1 \ldots|w|-1\}$. The other case is similar. Let c_{1} be the first symbol of w and $c_{|w|}$ be the last symbol of w, and choose y such that $w=c_{1} \cdot y \cdot c_{\mid} w \mid$. By the assumption about x, count $\left(c_{1}\right)>\# \mathrm{D}\left(c_{1}\right)$ which implies that $c_{1}=a$. Furthermore, $\# \mathrm{a}\left(c_{1} y\right)>\# \mathrm{~b}\left(c_{1} y\right)$, and $\# \mathrm{a}\left(c_{1} y c_{|w|}\right)=\# \mathrm{~b}\left(c_{1} y c_{|w|}\right)$. Thus, $c_{|w|}=b$. In other words, $w=a \cdot y \cdot b$. Because

$$
\# \mathrm{a}(y)=(\# \mathrm{a}(w)-1)=(\# \mathrm{a}(w)-1)=(\# \mathrm{~b}(w)-1)=\# \mathrm{~b}(y)
$$

$y \in A$. By the induction hypothesis, $y \in L(G)$. Thus, $S \underset{G}{*} y$; furthermore $S \underset{G}{\underset{G}{l}} a S b \underset{G}{*} a y b=$ w. Thus $w \in L(G)$ as required.
This completes the induction proof.
This induction argument shows that $A \subseteq L(G)$.
Having shown $L(G) \subseteq A$ and $A \subseteq L(G)$, I conclude $L(G)=A$.
2. (30 points): (Question 2 from Kozen Homework 6)

Construct a pushdown automaton that accepts the set of strings in $\{a, b\}^{*}$ with equally many a 's and b 's. Specify all transitions.

Solution:

Let M be a PDA that accepts on empty stack with

$$
\begin{aligned}
M= & (\{q\},\{a, b\},\{\perp, a, b\}, \delta, q, \perp, \emptyset) \\
\delta= & \{(q, a, \perp) \rightarrow(q, a \perp) \\
& (q, a, a) \rightarrow(q, a a) \\
& (q, a, b) \rightarrow(q, \epsilon) \\
& (q, b, \perp) \rightarrow(q, b \perp) \\
& (q, b, b) \rightarrow(q, b b) \\
& (q, b, a) \rightarrow(q, \epsilon) \\
& (q, \epsilon, \perp) \rightarrow(q, \epsilon) \\
& \}
\end{aligned}
$$

This machine has the charming property that

$$
\begin{aligned}
& (q, x y, \perp) \rightarrow(q, y, \alpha) \\
\Leftrightarrow & ((\# \mathrm{a}(x)-\# \mathrm{~b}(x))=(\# \mathrm{a}(\alpha)-\# \mathrm{~b}(\alpha))) \wedge((\# \mathrm{a}(\alpha)=0) \vee(\# \mathrm{~b}(\alpha)=0))
\end{aligned}
$$

This can be shown by induction on x. Furthermore, the machine can always consume its entire input string, as there is always a move on either input symbol that doesn't empty the stack. Thus, if w has an equal number of a 's and b 's, M will reach a configuration where $\# \mathrm{a}(\alpha)=\# \mathrm{~b}(\alpha)$. Since at least one of \#a (α) or $\# \mathrm{~b}(\alpha)$ must be zero, they must both be zero. Thus, the stack must be either \perp or ϵ. In the former case,
the machine can perform the transition $(q, \epsilon, \perp) \rightarrow(q, \epsilon)$ to empty its stack. In the other case, the stack is already empty. Thus, M accepts w.
Conversely, if M accepts w, M must read all of w and empty its stack. By the property shown above, if M empties its stack, then it has read an equal number of a 's and b 's. Thus, w has an equal number of a 's and b 's.
My explanation is longer than is needed to get full credit. My goal is to make sure that everyone in the class gets their questions answered.
3. (40 points): Let T be the language over the alphabet $\{[, \notin]$,$\} such that every [is followed by its matching$ \mathcal{H}, and every \mathbb{H} is followed by its matching], and the total number of [symbols and the total number of] symbols in the string are the same. More formally, let

$$
\begin{aligned}
\operatorname{left}(\epsilon) & =0, & \operatorname{middle}(\epsilon) & =0, & \operatorname{right}(\epsilon) & =0, \\
\operatorname{left}(x[) & =\operatorname{left}(x)+1, & \operatorname{middle}(x[) & =\operatorname{middle}(x), & \operatorname{right}(x[) & =\operatorname{right}(x), \\
\operatorname{left}(x \mp) & =\operatorname{left}(x), & \operatorname{middle}(x \mathbb{H}) & =\operatorname{middle}(x)+1, & \operatorname{right}(x]) & =\operatorname{right}(x), \\
\operatorname{left}(x]) & =\operatorname{left}(x), & \operatorname{middle}(x]) & =\operatorname{middle}(x), & \operatorname{right}(x]) & =\operatorname{right}(x)+1
\end{aligned}
$$

A string x is in T iff

$$
\forall y, z . x=y z .(\operatorname{left}(y) \geq \operatorname{middle}(y)) \wedge(\operatorname{middle}(y) \geq \operatorname{right}(y)) \wedge(\operatorname{left}(x)=\operatorname{middle}(x)=\operatorname{right}(x))
$$

For example, the strings
[HE] [[JE[H]][HE] [[J[] [E]
are in T, but the strings

$$
[][\mathcal{H E}] \quad[] \quad[\mathcal{H}[\text { He }][]]
$$

are not.
(a) (20 points): Prove that T is not a context-free language.

Solution:

If T were context-free, it would have a pumping lemma constant, k. Let $\left.z=\left[{ }^{k}\right]{ }^{k}\right]^{k}$. Clearly, $w \in T$. Consider any strings u, v, w, x, y with $u v x w y=z,|v x| \geq 1$, and $|v w x| \leq k$. If $v w x$ is contained in the prefix [$\left.{ }^{k}\right]{ }^{k}$, then pumping it will result in having a different number of [or $]$ symbols than] symbols. Likewise, if $v w x$ is a substring of $\left.H^{k}\right]^{k}$, then pumping it will produce a string with a different number of \mathcal{H} or] symbols than [symbols. In either case, a string that is not in T is produced. It is not possible for $v w x$ to be contain symbols in both [${ }^{k}$ and] ${ }^{k}$ because it would have to have a length of at least $k+1$. Thus, T doesn't satisfy the conditions of the pumping lemma. Therefore, it is not context-free.
(b) ($\mathbf{1 5}$ points): Give the grammars for two CFLs, A_{1} and A_{2} such that $T=A_{1} \cap A_{2}$.

Solution:

Let

$$
\begin{array}{rlr}
G_{1}= & \left.\left(\left\{S_{1}, R\right\},\{[,],]\right\}, P_{1}, S_{1}\right), & \text { grammar for } A_{1} \\
P_{1}= & \left\{S_{1} \rightarrow R S_{1} R\left|\left[S_{1}\right]\right| S_{1} S_{1} \mid \epsilon\right. & \\
& R \rightarrow] \mid \epsilon & \\
& \} & \\
G_{2}= & \left.\left(\left\{S_{2}, L\right\},\{[,],]\right\}, P_{2}, S_{2}\right), & \text { grammar for } A_{2} \\
P_{2}= & \left\{S_{2} \rightarrow L S_{2} L\left|\left[S_{2}\right]\right| S_{2} S_{2} \mid \epsilon\right. & \\
& L \rightarrow[\mid \epsilon &
\end{array}
$$

The grammar G_{1} accepts any strings where left and middle parentheses match properly, and allows right parentheses to appear anywhere. The grammar G_{2} accepts any strings where middle and right
parentheses match properly, and allows left parentheses to appear anywhere. Thus, any string that is in both $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ has every left parentheses matched by a subsequent middle parentheses, and every middle parentheses matched by a subsequent right parentheses. This is the language T.
(c) (5 points): Are context-free languages closed under intersection? Give a short justification for your answer.

Solution:

No. As shown above, G_{1} and G_{2} are context-free grammars. $L\left(G_{1}\right) \cap L\left(G_{2}\right)=T$, and T is not context-free.
(d) (5 points): Are context-free languages closed under complement? Give a short justification for your answer.

Solution:

As noted in the newsgroup, I had meant to write "intersection" instead of "complement". A short answer is that CFLs are not closed under complement as shown in the text book. For example, the language $\{x \mid x=w w\}$ is not a CFL, but its complement is.
Here's another proof that uses what we've just shown. CFLs are closed under union. Let A_{1} and A_{2} be two CFLs over the same alphabet. Let $G_{1}=\left(N_{1}, \Sigma, P_{1}, S_{1}\right)$ and $G_{2}=\left(N_{2}, \Sigma, P_{2}, S_{2}\right)$ be CFGs for A_{1} and A_{2} respectively. We can assume that N_{1} and N_{2} are disjoint and that neither contains the symbol S (this can be achieved by renaming non-terminals in one set or the other if needed). Let

$$
\begin{aligned}
G & =(N, \Sigma, P, S) \\
N & =N_{1} \cup N_{2} \cup\{S\} \\
P & =P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}
\end{aligned}
$$

It is straightforward to show that $L(G)=A_{1} \cup A_{2}$. Thus, CFLs are closed under union.
Now, if CFLs were closed under both union and complement, they would also be closed under intersection by De Morgan's Law:

$$
A_{1} \cap A_{2}=\sim\left(\left(\sim A_{1}\right) \cup\left(\sim A_{2}\right)\right)
$$

We have shown that CFLs are closed under union but not closed under intersection. Therefore, they are not closed under complement.

