
CpSc 421 Homework 3 Due: Oct. 21
NO LATE HOMEWORK ACCEPTED

1. (30 points): (Question 2 from Kozen Homework 5)
Prove that the CFG:

S → aSb | bSa | SS | ε

generates the set of all strings of {a, b} with equally many a’s and b’s. (Hint: Characterize elements of the set
in terms of the graph of the function #b(y) − #a(y) as y ranges over prefixes of x, as we did with balanced
parentheses.)

Solution:
Let A be the language of all strings over {a, b}∗ that have an equal number of a’s and b’s. I’ll prove that
L(G) ⊆ A and A ⊆ L(G) separately.

L(G) ⊆ A:
Let w ∈ L(G). My proof in by induction on the number of steps, n, in the derivation of w.

Induction Hypothesis: S
n−→
G

α ⇒ (#a(α) = #b(α))
Base case — n = 0:

S
0−→
G

α
⇒ α = S

(#a(α) = 0) ∧ (#b(α) = 0)
#a(α) = #b(α)

Induction step — S
n−→
G

αAβ
1−→
G

αµβ There is a separate case for each production of A → µ of
G.
A → µ ≡ S → aSb:

#a(αµβ) = #a(αaSbβ), case hypothesis: µ = aSb
= #a(αβ) + #a(aSb), properties of addition
= #a(αSβ) + 1, #a(s) = 0, #a(aSb) = 1

Likewise, #b(αaSbβ) = #b(αSβ) + 1. #a(αSβ) = #b(αSβ) from which we conclude
#a(αaSbβ) = #b(αaSbβ) as required.

A → µ ≡ S → aSb:
The same argument as for the previous case (swapping a and b) applies here.

A → µ ≡ S → SS:
As there are neither any a nor b terminals in S, we have #a(αSβ) = #a(αSSβ), and likewise
for the b’s. Thus, #a(αSSβ) = #b(αSSβ) follows directly from the induction hypothesis.

Thus, if S
∗−→
G

w, then #a(w) = #b(w). Therefore, w ∈ A and I conclude L(G) ⊆ A.
A ⊆ L(G): Let w ∈ A. I’ll prove w ∈ L(G) by induction on w. As in the proof for the balanced

parenthesis language, my proof uses “strong” induction – I use apply the induction hypothesis to
strings that are shorter than |w| − 1.

Induction Hypothesis — ((w ∈ A) ∧ (|w| ≤ n)) ⇒ (w ∈ L(G)):
Base step — w = ε:

S → ε. Thus, ε ∈ L(G).
Induction step:

I break the proof into two cases as was done for the balanced parentheses language according
to whether or not w can be divided into a non-empty prefix and suffix where each has an equal
number of a’s and b’s.



case ∃x, y ∈ Σ+. (w = xy) ∧ (#a(x) = #b(x)) ∧ (#a(y) = #b(y)):
Because |x| < |w| and x ∈ A, the induction hypothesis applies, and I conclude x ∈ L(G).
Equivalently, S

∗−→
G

x. Likewise, S
∗−→
G

y. The production S → SS is in G. Thus,

S
1−→
G

S S
∗−→
G

x S
∗−→
G

x y = w

Thus, w ∈ L(G).
case ¬∃x, y ∈ Σ+. (w = xy) ∧ (#a(x) = #b(x)) ∧ (#a(y) = #b(y)):

Because #a(x) and #b(x) are integers and change by 0 or +1 as symbols are appended to x, I
conclude:

∀x, y ∈ Σ+. (w = xy) ⇒ ((#a(x) > #b(x)) ∨ (#a(y) > #b(y)))

I’ll assume that #a(x) > #b(x) for all prefixes of w with lengths in {1 . . . |w| − 1}. The other
case is similar. Let c1 be the first symbol of w and c|w| be the last symbol of w, and choose y
such that w = c1 · y · c|w|. By the assumption about x, count(c1) > #b(c1) which implies that
c1 = a. Furthermore, #a(c1y) > #b(c1y), and #a(c1yc|w|) = #b(c1yc|w|). Thus, c|w| = b. In
other words, w = a · y · b. Because

#a(y) = (#a(w)− 1) = (#a(w)− 1) = (#b(w)− 1) = #b(y)

y ∈ A. By the induction hypothesis, y ∈ L(G). Thus, S ∗−→
G

y; furthermore S
1−→
G

aSb
∗−→
G

a y b =
w. Thus w ∈ L(G) as required.

This completes the induction proof.
This induction argument shows that A ⊆ L(G).

Having shown L(G) ⊆ A and A ⊆ L(G), I conclude L(G) = A.

2. (30 points): (Question 2 from Kozen Homework 6)
Construct a pushdown automaton that accepts the set of strings in {a, b}∗ with equally many a’s and b’s. Specify
all transitions.

Solution:
Let M be a PDA that accepts on empty stack with

M = ({q}, {a, b}, {⊥, a, b}, δ, q,⊥, ∅)
δ = { (q, a,⊥) → (q, a ⊥)

(q, a, a) → (q, aa)
(q, a, b) → (q, ε)
(q, b,⊥) → (q, b ⊥)
(q, b, b) → (q, bb)
(q, b, a) → (q, ε)
(q, ε,⊥) → (q, ε)

}

This machine has the charming property that

(q, xy,⊥) → (q, y, α)
⇔ ((#a(x)− #b(x)) = (#a(α)− #b(α))) ∧ ((#a(α) = 0) ∨ (#b(α) = 0))

This can be shown by induction on x. Furthermore, the machine can always consume its entire input string,
as there is always a move on either input symbol that doesn’t empty the stack. Thus, if w has an equal
number of a’s and b’s, M will reach a configuration where #a(α) = #b(α). Since at least one of #a(α)
or #b(α) must be zero, they must both be zero. Thus, the stack must be either ⊥ or ε. In the former case,



the machine can perform the transition (q, ε,⊥) → (q, ε) to empty its stack. In the other case, the stack is
already empty. Thus, M accepts w.
Conversely, if M accepts w, M must read all of w and empty its stack. By the property shown above, if
M empties its stack, then it has read an equal number of a’s and b’s. Thus, w has an equal number of a’s
and b’s.
My explanation is longer than is needed to get full credit. My goal is to make sure that everyone in the
class gets their questions answered.

3. (40 points): Let T be the language over the alphabet {[,]-[,]} such that every [ is followed by its matching
]-[, and every ]-[ is followed by its matching ], and the total number of [ symbols and the total number of ]
symbols in the string are the same. More formally, let

left(ε) = 0, middle(ε) = 0, right(ε) = 0,
left(x[) = left(x) + 1, middle(x[) = middle(x), right(x[) = right(x),
left(x]-[) = left(x), middle(x]-[) = middle(x) + 1, right(x]-[) = right(x),
left(x]) = left(x), middle(x]) = middle(x), right(x]) = right(x) + 1

A string x is in T iff

∀y, z. x = yz. (left(y) ≥ middle(y)) ∧ (middle(y) ≥ right(y)) ∧ (left(x) = middle(x) = right(x))

For example, the strings
[]-[] [[]-[[]-[]][]-[]]-[] []-[[]]-[]

are in T , but the strings
[][]-[]-[] [] []-[[]-[]]-[[]]

are not.

(a) (20 points): Prove that T is not a context-free language.

Solution:
If T were context-free, it would have a pumping lemma constant, k. Let z = [k]-[k]k. Clearly,
w ∈ T . Consider any strings u, v, w, x, y with uvxwy = z, |vx| ≥ 1, and |vwx| ≤ k. If vwx
is contained in the prefix [k]-[k, then pumping it will result in having a different number of [ or ]-[
symbols than ] symbols. Likewise, if vwx is a substring of ]-[k]k, then pumping it will produce a
string with a different number of ]-[ or ] symbols than [ symbols. In either case, a string that is not in
T is produced. It is not possible for vwx to be contain symbols in both [k and ]k because it would
have to have a length of at least k + 1. Thus, T doesn’t satisfy the conditions of the pumping lemma.
Therefore, it is not context-free.

(b) (15 points): Give the grammars for two CFLs, A1 and A2 such that T = A1 ∩A2.

Solution:
Let

G1 = ({S1, R}, {[,]-[,]}, P1, S1), grammar for A1

P1 = { S1 → RS1R | [S1] | S1S1 | ε
R → ] | ε

}
G2 = ({S2, L}, {[,]-[,]}, P2, S2), grammar for A2

P2 = { S2 → LS2L | [S2] | S2S2 | ε
L → [ | ε

}

The grammar G1 accepts any strings where left and middle parentheses match properly, and allows
right parentheses to appear anywhere. The grammar G2 accepts any strings where middle and right



parentheses match properly, and allows left parentheses to appear anywhere. Thus, any string that is
in both L(G1) and L(G2) has every left parentheses matched by a subsequent middle parentheses,
and every middle parentheses matched by a subsequent right parentheses. This is the language T .

(c) (5 points): Are context-free languages closed under intersection? Give a short justification for your
answer.

Solution:
No. As shown above, G1 and G2 are context-free grammars. L(G1) ∩ L(G2) = T , and T is not
context-free.

(d) (5 points): Are context-free languages closed under complement? Give a short justification for your
answer.

Solution:
As noted in the newsgroup, I had meant to write “intersection” instead of “complement”. A short
answer is that CFLs are not closed under complement as shown in the text book. For example, the
language {x| x = ww} is not a CFL, but its complement is.
Here’s another proof that uses what we’ve just shown. CFLs are closed under union. Let A1 and A2

be two CFLs over the same alphabet. Let G1 = (N1,Σ, P1, S1) and G2 = (N2,Σ, P2, S2) be CFGs
for A1 and A2 respectively. We can assume that N1 and N2 are disjoint and that neither contains the
symbol S (this can be achieved by renaming non-terminals in one set or the other if needed). Let

G = (N,Σ, P, S)
N = N1 ∪N2 ∪ {S}
P = P1 ∪ P2 ∪ {S → S1 | S2}

It is straightforward to show that L(G) = A1 ∪A2. Thus, CFLs are closed under union.
Now, if CFLs were closed under both union and complement, they would also be closed under inter-
section by De Morgan’s Law:

A1 ∩A2 = ∼((∼A1) ∪ (∼A2))

We have shown that CFLs are closed under union but not closed under intersection. Therefore, they
are not closed under complement.


