
CpSc 421 Homework 2 Solutions

1. (20 points): Kozen, Homework 4, question 1 – Show that the following sets are not regular.

(a) B = {anbm|n = 2m}
Solution:

For the sake of contradiction, assume thatB is regular. Letk be the pumping lemma constant forB.
Consider the strings = a2kbk ∈ B. Let x = ε, y = ak, andz = akbk. Clearlys = xyz. By the
pumping lemma, there exist stringsu, v, andw, such thaty = uvw and|v| > 0, andxuviwz ∈ B for
anyi ≥ 0. Let j = |v| > 0. Then,uviw = ak+(i−1)j , andxuviwz = a2k+(i−1)jbk. By the definition
of B, xuviwz ∈ B iff 2k + (i − 1)j = 2k, which meansi = 1 (becausej 6= 0). In particular, if
i = 0, thenxuv0wz = a2k−jbk 6∈ B. Thus,B does not satisfy the pumping lemma, and we conclude
thatB is not regular.

(b) B = {x ∈ {a, b, c}∗|x = rev(x)}
Solution:

(Note that the solution to part (a) provides a template to cut-and-paste and then change the definitions
of the variousx, y, z, u, v, andw strings to get the desired counter-example.)
For the sake of contradiction, assume thatB is regular. Letk be the pumping lemma constant forB.
Consider the strings = akbbak ∈ B. Let x = ε, y = ak, andz = bbak. Clearlys = xyz. By the
pumping lemma, there exist stringsu, v, andw, such thaty = uvw and|v| > 0, andxuviwz ∈ B
for any i ≥ 0. Let j = |v| > 0. Then,uviw = ak+(i−1)j , andxuviwz = ak+(i−1)jbbak. By the
definition ofB, xuviwz ∈ B iff k + (i− 1)j = k, which meansi = 1 (becausej 6= 0). In particular,
if i = 0, thenxuv0wz = ak−jbbak 6∈ B. Thus,B does not satisfy the pumping lemma, and we
conclude thatB is not regular.

(c) B = {x ∈ {a, b, c}∗||x| is a perfect square}
Solution:

For the sake of contradiction, assume thatB is regular. Letk be the pumping lemma constant forB.
Consider the strings = a(k+1)2 ∈ B. Let x = ε, y = ak, andz = ak2+k+1. Clearlys = xyz. By the
pumping lemma, there exist stringsu, v, andw, such thaty = uvw and0 < |v| ≤ k, andxuviwz ∈ B
for anyi ≥ 0. Let j = |v|, and consider the case withi = 0. We have,|xuv0wz| = k2 + k + 1 > k2

(becausek ≥ 0). Furthermore|xuv0wz| = k2 + k + 1 < k2 + 2k + 1 = (k + 1)2. We conclude:
k2 < |xuv0wz| < (k + 1)2. Thus,|xuv0wz| is not a perfect square, which means thatxuv0wz 6∈ B.
Thus,B does not satisfy the pumping lemma, and we conclude thatB is not regular.

(d) The set PAREN of balanced strings of parentheses.

Solution:
For the sake of contradiction, assume thatB is regular. Letk be the pumping lemma constant forB.
Consider the strings = (k)k. Let x = ε, y = (k, andz = )k. Clearlys = xyz. By the pumping
lemma, there exist stringsu, v, andw, such thaty = uvw and0 < |v| ≤ k, andxuviwz ∈ B for any
i ≥ 0. Let j = |v|, and consider the case withi = 0. We have,xuv0wz = (k−j)k. Becausej > 0,
there are fewer left parentheses than right parentheses in this string. Thus,xuv0wz 6∈ B. Thus,B
does not satisfy the pumping lemma, and we conclude thatB is not regular.
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Figure 1: NFAs for(01)∗ and(10)∗

2. (20 points): Kozen, Homework 4, question 2 –
The operation ofshuffleis important in the theory of concurrent systems. Ifx, y ∈ Σ∗, we writex‖y for the set
of all strings that can be obtained by shuffling stringsx andy together like a deck of cards, for example:

ab‖cd = {abcd, acbd, acdb, cabd, cadb, cdab}

The setx‖y can be defined formally by induction:

ε‖y def= {y}

x‖ε def= {x}

xa‖yb
def= ((x‖yb) · a) ∪ ((xa‖y) · b)

The shuffle of two languages,A andB, denotedA‖B, is the set of all strings obtained by shuffling a string from
A with a string fromB:

A‖B def=
⋃

x ∈ A
y ∈ B

x‖y

For example,
{ab}‖{cd, e} = {abe, aeb, eab, abcd, acbd, cabd, cadb, cdab}

(a) What is(01)∗‖(10)∗?

Solution:
First, I constructed NFAs for the languages(01)∗ and(10)∗. Figure 1 shows these NFAs. Then, I
constructed a NFA for the language(01)∗‖(10)∗. Here, the idea is that each symbol of the input string
is consumed by one of the two component NFAs, but not both. So, I built something that resembles
the product machine construction. Rows of states in my construction are copies of the NFA for(01)∗,
and columns of states are copies of the NFA for(10)∗. Because each input symbol is consumed by
exactly one of the original machines, moves in the joint machine are either horizontal (for a move
by the(01)∗ machine), or vertical (for moves by the(10)∗ machine). There are no diagonal moves
(unlike a true, product machine). Accepting states are states that are accepted by both of the original
machines. Figure 2 shows this composite machine.
Given this NFA, it’s straightforward to construct a regular expression for the language. Note that the
state11 could be eliminated, because the set of states reachable from it is identical to the set reachable
from state00, but I won’t make this optimization. This makes my solution here correspond directly
to my solution for part (b) below. Ignoring state11, we see that the machine accepts strings that make
any number of round trips to state01 and back to00 and any number of round trips to state10 and
back to00. This is the language(01 + 10)∗.
A solution that presents a DFA, NFA, or RE for the language is acceptable. It’s not necessary to
present both a NFA and a RE like I did.
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Figure 2: A NFA for(01)∗‖(10)∗

(b) Show that ifA andB are regular sets, then so isA‖B.

Solution:
My solution is a generalization of that which I gave for part (a). LetMA = (QA,Σ,∆A, Q0,A, FA)
be a NFA that acceptsA, andMB = (QB ,Σ,∆B , Q0,B , FB) be a NFA that acceptsB. LetMA‖B =
(QA‖B ,Σ,∆A‖B , Q0,A‖B , FA‖B) be the NFA with

QA‖B = QA ×QB

Q0,A‖B = (Q0,A, Q0,B)
FA‖B = FA × FB

I’ll now describe how to construct∆A‖B . Let pj ∈ ∆A(pi, c). Then, for everyqk ∈ QB , we include
(pj , qk) in ∆A‖B((pi, qk), c). This says that theMA‖B can make a move corresponding to the move
for MA, and the state for theMB machine remains unchanged. Likewise, ifqj ∈ ∆B(qi, c), then for
everypk ∈ QB , we include(pk, qj) in ∆A‖B((pi, qk), c). Putting all of this together, we get

∆A‖B((p, q), c) = (∆A(p, c)× {q}) ∪ ({p} ×∆B(q, c))

∆A‖B((pi, qk), c).
This completes the construction ofMA‖B . If MA‖B acceptsw, we can “unshuffle”w into stringsx
andy wherex is the sequence of symbols inw whereMA‖B makes a move corresponding toMA,
andy is the sequence of symbols corresponding to moves ofMB . Thus,w is a shuffle ofx andy
wherex ∈ A andy ∈ B. A similar argument shows that for anyx ∈ A andy ∈ B, MA‖B accepts
any shuffle ofx andy. Thus,L(MA‖B) = A‖B. MA‖B is a NFA. Therefore,L(MA‖B) is regular.
Thus,A‖B is regular.

Remark: Kozen said that the shuffle operation is important in the theory of concurrent systems. For
example, think of some protocol for communicating in a distributed system. We can think ofA andB
as describing the protocols that some process has with two, independent, remote processes. The language
A‖B describes all possible ways events can arrive from these two remote processes. We can then use this
to show the process that receives these events behaves properly (e.g. doesn’t deadlock, guarantees mutual
exclusion if needed, always responds, etc.).



3. (15 points): Kozen Homework 3, question 3.
For any set of stringsA, define the set

MiddleThirds A = {y|∃x, z. (|x| = |y| = |z|) ∧ xyz ∈ A}

Show that ifA is regular, than so isMiddleThirds A.

Solution:
My approach is to construct a NFA that acceptsMiddleThirds A. The challenge is to figure out if
stringsx andz exist without actually figuring out what the strings are. In particular, we can letMA =
(Q,Σ, δ, q0, F ) be a DFA that acceptsA. We can build some other DFA or NFA that has a number of states
that depends on the number of states inMA, but we can’t have the number of states of our new machine
depend on the length ofy.
The key observation is that all we know aboutx is that it has the same length ofy. So, the question
becomes:

What states are reachable fromq0 after reading|y| input symbols?

Likewise, once we’ve ready, z has|y| more symbols. Thus, if we reach stateqi after processingy, we
want to know

What states are reachable fromqi after reading|y| input symbols?

I’ll construct a machine that does this by building a machine that can move from stateqi to qj on any
input symbol iffMA can move fromqi to qj for some input symbol. I’ll write∆∗ to denote this transition
relation with:

∆∗(q, c) = {p|∃a ∈ Σ. p = δ(q, a)}

Let Q = q0, q2, . . . qn−1. I’ll now define machinesR0, . . . Rn−1 such thatqi

y
→
Mi qj iff there is some string

x with |x| = |y| such thatqi

x→
MA qj Here’s the definition:

Ri = (Q, Σ,∆∗, {qi}, ∅)

I set the accepting set to∅ because at this point we’re just handling reachability. I’ll figure out the accepting
set that we really want shortly.
MachineR0 will handle simulating the processing ofx, and all of theRi machines together will simulate
processingz. I now need to processy. We don’t know at the beginning ofy what state ofMA to start in;
so, we buildn more machines to consider theM possibilities:

Mi = (Q,Σ, δ, {qi}, ∅)

We’re almost there. Stringy is in MiddleThirds A iff there are statesqi andqj and stringsx andz with
|x| = |y| = |z| such that̂δ(q0, x) = qi, δ̂(qi, y) = qj , andδ̂(qj , z) ∈ FA. We can test this with a machine
that is the cross-product of theRi andMi machines:

M |
3

= (Q |
3
,Σ,∆ |

3
, Q

0,
|
3
, F |

3
)

The state space forM |
3

is Q |
3

= Q2n. The transition relation is

∆ |
3
((r0, r1, . . . rn−1, s0, s1, . . . sn−1), c)

= {(u0, u1, . . . un−1, v0, v1, . . . vn−1)|
∀i ∈ {0 . . . n− 1}. ui ∈ ∆∗(ri, c)

∧ ∀i ∈ {0 . . . n− 1}. vi ∈ δ(si, c)
}



In other words, the firstn components of the state keep track of theRi machines, and the lastn keep track
of theMi machines.
There is one initial state:

Q
0,

|
3

= {(q0, q1, . . . qn−1, q0, q1, . . . qn−1)}

Going back to our observation that stringy is in MiddleThirds A iff there are statesqi andqj and strings
x andz with |x| = |y| = |z| such that̂δ(q0, x) = qi, δ̂(qi, y) = qj , andδ̂(qj , z) ∈ FA, we can construct
F |

3
to recognize this set. In particular, after readingy, machineR0 must reach stateqi, machineMi must

reachqj , and matchingRj must reach some state inF . As a mathematical formula:

F |
3

= {(r0, r1, . . . rn−1, s0, s1, . . . sn−1)|
∃i, j. (r0 = qi) ∧ (si = qj) ∧ (rj ∈ F )

By construction,L(M |
3
) = MiddleThirds A. M |

3
is a NFA. Therefore,MiddleThirds A is regular.

Short Solution:
Let MA = (Q, Σ, δ, q0, F ) be a DFA that acceptsA. Assume thatQ = q0, q1, . . . qn. Let,

∆∗(q, c) = {p|∃a ∈ Σ. p = δ(q, a)}

A machine with state transition relation∆∗ can make a move from stateqi to qj on any input symbol iff
MA can move fromqi to qj for some input symbol. Define

Ri = (Q,Σ,∆∗, {qi}, ∅)

With any input string, machineRi can reach aftern input symbols any state that machineMA can reach
from qi for some input string input string of lengthn. In a similar fashion, define,

Mi = (Q,Σ, δ, qi, ∅)

MachineM0 is the same asMA, and the others are likeMA except that they have different starting states.
I’ll now construct a NFA that acceptsMiddleThirdsA. Let Q |

3
= Q2n, and let

Q
0,

|
3

= {(q0, q1, . . . qn−1, q0, q1, . . . qn−1)}

The state transition relation forM |
3

is

∆ |
3
((r0, r1, . . . rn−1, s0, s1, . . . sn−1), c)

= {(u0, u1, . . . un−1, v0, v1, . . . vn−1)|
∀i ∈ {0 . . . n− 1}. ui ∈ ∆∗(ri, c)

∧ ∀i ∈ {0 . . . n− 1}. vi ∈ δ(si, c)
}

Finally, the final states are:

F |
3

= {(r0, r1, . . . rn−1, s0, s1, . . . sn−1)|
∃i, j. (r0 = qi) ∧ (si = qj) ∧ (rj ∈ F )

MachineM |
3

= (Q |
3
,Σ,∆ |

3
, Q

0,
|
3
, F |

3
) accepts a string,y iff there are stringsx andz with |x| = |y| = |z|

and statesqi, qj ∈ Q such thatMA moves fromq0 to qi when readingx, from qi to qj when readingy, and
from qj to some state inF when readingz. This is demonstrated becauser0 = qi (i.e. machineR0 was
able to reachqi in |y| moves);si = qj (i.e. a machine likeMA starting in stateqi moved toqj by reading
y); andrj ∈ F (i.e. machineRj started in stateqj and reached a state inF after|y| moves).



4. (45 points): Let Σ = {0, 1}3, i.e. the set of tuples consisting of three bits. For,(a, b, c) ∈ Σ, define

first((a, b, c)) = a
second((a, b, c)) = b

third((a, b, c)) = c

We overloadfirst, second, andthird to strings as shown below:

first(ε) = ε
first(x · c) = first(x) · first(c)

second(ε) = ε
second(x · c) = second(x) · second(c)

third(ε) = ε
third(x · c) = third(x) · third(c)

For example, ifs = (0, 0, 0)(0, 0, 1)(0, 1, 0)(0, 1, 1)(1, 0, 0)(1, 0, 1), thenfirst(s) = 000011, second(s) =
001100, andthird(s) = 010101. For s ∈ {0, 1}∗, let binary(s) denote the binary value ofs when the most
significant bit is the first symbol of the string:

binary(ε) = 0
binary(0) = 0
binary(1) = 1

binary(x · c) = 2 ∗ binary(x) + binary(c)

For each of the languages described below, state whether or not the language is regular. If the language is
regular, then construct a DFA, NFA, or pattern for the language to justify your conclusion; you may also use any
property of regular languages that we have proven in class or that is proven in the textbook. If the language is
not regular, prove that it is not. Again, you may use any property of regular languages that has been proven in
class or in the textbook.

(a) (15 points): binary addition

B = {w| binary(third(w)) = binary(first(w)) + binary(second(w))}

Solution:
The languageB is regular. My construction uses the same ideas as the “multiply-by-three” FA
from HW1. I’ll describe it using an NFA so I don’t have to clutter my solution with transitions to
a “garbage” state.

M = (Q,Σ,∆, Q0, F )
Q = {q0, q1}
Σ = {0, 1}3Q0 = {q0}F = {q0}
∆(q0, (0, 0, 0)) = {q0}, ∆(q1, (0, 0, 1)) = {q0},
∆(q0, (0, 1, 1)) = {q0}, ∆(q1, (0, 1, 0)) = {q1},
∆(q0, (1, 0, 1)) = {q0}, ∆(q1, (1, 0, 0)) = {q1},
∆(q0, (1, 1, 0)) = {q1}, ∆(q1, (1, 1, 1)) = {q1}

Stateq0 represents the situation where the carry from the previous bit is0, andq1 indicates that the
carry from the previous bit is1.
By constructionL(M) = rev(B). Thus,B = rev(L(M)). L(M) is regular because it is recognized
by a NFA. Thus,B is regular because it is the reverse of a regular language.



(b) (15 points): unary numbers

B =
{
w| ∃m1,m2,m3. (first(w) = 1m10|w|−m1)

∧ (second(w) = 1m20|w|−m2)
∧ (third(w) = 1m30|w|−m3)

}
Solution:

The languageB is regular. The requirement,first(w) = 1m10|w|−m1 corresponds to the regular
expressionα1 where:

α1 = α∗
11α

∗
10

α11 = (1, 0, 0) + (1, 0, 1) + (1, 1, 0) + (1, 1, 1)
α10 = (0, 0, 0) + (0, 0, 1) + (0, 1, 0) + (0, 1, 1)

Regular expressionsα2, andα3 corresponding respectively tosecond(w) = 1m20|w|−m2 andthird(w) =
1m30|w|−m3 can be defined in the same manner. By construction,B = α1 ∩ α2 ∩ α3. Thus,B is
regular.

(c) (15 points): unary addition

B =
{
w| ∃m1,m2. (first(w) = 1m10|w|−m1)

∧ (second(w) = 1m20|w|−m2)
∧ (third(w) = 1m1+m20|w|−(m1+m2))

}
Solution:

This time, B is not regular. LetC = B ∩ (1, 1, 1)∗(0, 0, 1)∗. It is straightforward to show that
C = (1, 1, 1)k(0, 0, 1)k (strings inC correspond to the sumk + k = 2k). This is equivalent to the
languageakbk which we have already seen is not regular (see Kozen, lecture 11). Thus,C is not
regular. The regular languages are closed under intersection. ThereforeB is not regular either.
Note: it’s perfectly acceptable to show thatB is not regular by using the pumping lemma. I used this
simple homomorphism argument to illustrate that sometimes there are even simpler proofs available.

One more remark: this problem shows that whether or not{(x, y, z)|z = x+ y} is regular depends on the
encoding of the numbers. In particular, binary addition is a regular language but unary addition is not. If
instead of entering corresponding bits of the three numbers together, we first entered all of the bits ofx,
then all of the bits ofy, and finally all of the bits ofz, then the language isn’t regular either.


