CpSc421 Homework 2 Solutions

1. (20 points): Kozen, Homework 4, question 1 — Show that the following sets are not regular.

(@ B ={a"b"|n =2m}

Solution:
For the sake of contradiction, assume tBais regular. Letk be the pumping lemma constant fBr
Consider the string = a?*b* € B. Letxz = ¢, y = a*, andz = a*b*. Clearlys = xyz. By the
pumping lemma, there exist stringsv, andw, such thay = uvw and|v| > 0, andzuviwz € B for
anyi > 0. Letj = |[v| > 0. Thenuv'w = **t( V7 andzuviwz = o?*+(—Dipk, By the definition
of B, zuvwz € B iff 2k + (i — 1)j = 2k, which means = 1 (becausg # 0). In particular, if
i =0, thenzur’wz = a®*~7b* ¢ B. Thus,B does not satisfy the pumping lemma, and we conclude
that B is not regular.

(b) B ={z € {a,b,c}*|z =rev(x)}

Solution:
(Note that the solution to part (a) provides a template to cut-and-paste and then change the definitions
of the variouse, y, z, u, v, andw strings to get the desired counter-example.)
For the sake of contradiction, assume tRais regular. Let: be the pumping lemma constant Bt
Consider the string = a*bba* € B. Letz = ¢, y = a¥, andz = bba*. Clearlys = zyz. By the
pumping lemma, there exist strings v, andw, such thaty = uvw and|v| > 0, andzuviwz € B
foranyi > 0. Letj = |v| > 0. Then,uv'w = a**0=Y7 andzuv'wz = a*+(~NDipba*. By the
definition of B, zuv'wz € Biff k+ (i —1)j = k, which meang = 1 (becausg # 0). In particular,
if i = 0, thenzur®wz = a*~7bba* ¢ B. Thus, B does not satisfy the pumping lemma, and we
conclude thaiB is not regular.

(¢) B ={x € {a,b,c}*||z| is a perfect squale

Solution:

For the sake of contradiction, assume tBais regular. Let: be the pumping lemma constant fBr

Consider the string = a(*+1)” € B. Letz = ¢, y = a¥, andz = o*"+*+1. Clearlys = 2yz. By the
pumping lemma, there exist stringsv, andw, such thay = vvw and0 < |v| < k, andruviwz € B

for anyi > 0. Letj = |v|, and consider the case with= 0. We have|ruvwz| = k? + k + 1 > k?

(because: > 0). Furthermordzuv®wz| = k* + k+ 1 < k? + 2k + 1 = (k + 1)2. We conclude:
k% < |zuvwz| < (k + 1)2. Thus,|zuv’wz| is not a perfect square, which means thatwz ¢ B.

Thus, B does not satisfy the pumping lemma, and we conclude#hatnot regular.

(d) The set PAREN of balanced strings of parentheses.

Solution:
For the sake of contradiction, assume tBais regular. Let: be the pumping lemma constant Bt
Consider the string = (*)*. Letz = ¢, y = (*, andz = )*. Clearlys = zyz. By the pumping
lemma, there exist strings v, andw, such thaty = vvw and0 < |v| < k, andzuviwz € B for any
i > 0. Letj = |v], and consider the case with= 0. We havezur®wz = (*77)*. Becausg > 0,
there are fewer left parentheses than right parentheses in this string. zthis;z ¢ B. Thus,B
does not satisfy the pumping lemma, and we concludehatnot regular.



”‘0 o
( : ) . A NFA that
0 1
1

accepts (10)*
A NFA that accepts (01)*

Figure 1: NFAs for(01)* and(10)*

2. (20 points): Kozen, Homework 4, question 2 —
The operation ofhuffleis important in the theory of concurrent systemse Ify € X*, we writez||y for the set
of all strings that can be obtained by shuffling stringsndy together like a deck of cards, for example:

ablled = {abed, acbd, acdb, cabd, cadb, cdab}
The setz||y can be defined formally by induction:

def
elly d=f {y}
e
rlle = {z}

LCF (@llyb) - a) U ((zally) - b)

The shuffle of two languaged, and B, denotedA|| B, is the set of all strings obtained by shuffling a string from
A with a string fromB:

zallyb

def
AlB = U =zly
re A
y€E€B

For example,
{ab}||{cd,e} = {abe,aed,eab,abed, acbd, cabd, cadb, cdab}

(a) What is(01)*]|(10)*?

Solution:
First, | constructed NFAs for the languag@d )* and (10)*. Figure 1 shows these NFAs. Then, |
constructed a NFA for the languag@l )*||(10)*. Here, the idea is that each symbol of the input string
is consumed by one of the two component NFAs, but not both. So, | built something that resembles
the product machine construction. Rows of states in my construction are copies of the NBA) for
and columns of states are copies of the NFA(ft)*. Because each input symbol is consumed by
exactly one of the original machines, moves in the joint machine are either horizontal (for a move
by the (01)* machine), or vertical (for moves by th{&¢0)* machine). There are no diagonal moves
(unlike a true, product machine). Accepting states are states that are accepted by both of the original
machines. Figure 2 shows this composite machine.
Given this NFA, it's straightforward to construct a regular expression for the language. Note that the
statel 1 could be eliminated, because the set of states reachable from it is identical to the set reachable
from state00, but | won’t make this optimization. This makes my solution here correspond directly
to my solution for part (b) below. Ignoring stat&, we see that the machine accepts strings that make
any number of round trips to stafé and back td0 and any number of round trips to state and
back to00. This is the languagé1 + 10)*.
A solution that presents a DFA, NFA, or RE for the language is acceptable. It's not necessary to
present both a NFA and a RE like I did.
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Figure 2: A NFA for(01)*||(10)*

(b) Show that ifA and B are regular sets, then soAd| B.

Solution:
My solution is a generalization of that which | gave for part (a). M&f = (Q4,2, A4, Qo0.4, Fa)
be a NFA that acceptd, andMp = (@, =, Ap, Qo,5, F5) be a NFA that accepts. Let Mz =
(Qa|B> %, Aas, Qo4 B, Fayp) be the NFA with

Qap = QaxQp
Qoap = (Qo,a,Q0,B)
Fap = FaxFg

I'll now describe how to construah 4 5. Letp; € Aa(p;, c). Then, for everyy, € Qp, we include
(pj»ax) In Aas((pisqr), ). This says that thé/ 5 can make a move corresponding to the move
for M 4, and the state for th#/z machine remains unchanged. Likewiseyife Ag(g;,c), then for
everyp, € Qp, we include(pg, g;) in A 4 5((ps, qr), ¢). Putting all of this together, we get

Aas((pa),c) = (Aalp, o) x{g}) U ({p} x Ap(g;0))

A (P, qr); ©).
This completes the construction 8f 4 5. If M4 5 acceptsw, we can “unshuffle’w into stringsxz

andy wherex is the sequence of symbols inwhere M 4z makes a move corresponding Ad4,
andy is the sequence of symbols corresponding to move®/ gf Thus,w is a shuffle ofz andy
wherez € A andy € B. A similar argument shows that for anye A andy € B, M4 5 accepts
any shuffle ofr andy. Thus,L(M 4 5) = A||B. M, is a NFA. Therefore(M 4 5) is regular.
Thus,A|| B is regular.

Remark: Kozen said that the shuffle operation is important in the theory of concurrent systems. For
example, think of some protocol for communicating in a distributed system. We can thinlkantl B

as describing the protocols that some process has with two, independent, remote processes. The language
A|| B describes all possible ways events can arrive from these two remote processes. We can then use this
to show the process that receives these events behaves properly (e.g. doesn’t deadlock, guarantees mutual
exclusion if needed, always responds, etc.).



3. (15 points): Kozen Homework 3, question 3.
For any set of stringsgl, define the set

MiddleThirds A = {y|3z, 2. (|z| = |y| = |2|) A zyz € A}
Show that ifA is regular, than so iMiddleThirds A.

Solution:
My approach is to construct a NFA that acceptgldleThirds A. The challenge is to figure out if
stringsx and z exist without actually figuring out what the strings are. In particular, we caMlgt=
(Q,%,9,q0, F) be a DFA that acceptd. We can build some other DFA or NFA that has a number of states
that depends on the number of stateddn, but we can’t have the number of states of our new machine
depend on the length gf
The key observation is that all we know abauts that it has the same length 9f So, the question
becomes:

What states are reachable frogg after reading|y| input symbols?

Likewise, once we've read, =z has|y| more symbols. Thus, if we reach stateafter processing, we
want to know

What states are reachable frognafter reading|y| input symbols?

I'll construct a machine that does this by building a machine that can move fromgstate;; on any
input symbol iff M 4 can move frony; to g; for some input symbol. I'll writeA,, to denote this transition
relation with:
Aulg,e) = A{p[PBaeX.p=d(q,a)}
Y
Let@ = qo,q2, - - - ¢n—1- I'll NOW define machinedzy, . .. R,,_1 such thay; 17 g; iff there is some string

x

x with |z| = |y| such thay; Ma g; Here’s the definition:

Ri = (Q727A*7{Q'L}7@)

| set the accepting set fobecause at this point we're just handling reachability. I'll figure out the accepting
set that we really want shortly.

Machine R, will handle simulating the processing of and all of theR; machines together will simulate
processing. | now need to procesgs We don't know at the beginning af what state of\/ 4 to start in;

so, we buildn more machines to consider tii¢ possibilities:

Mi = (Q72a57 {ql}7®)

We're almost there. String is in MiddleThirds A iff there are stateg; andg; and stringse andz with
|z| = |y| = || such thab(qo, x) = ¢, 6(qi, y) = q;, andd(q;, z) € Fa. We can test this with a machine
that is the cross-product of thHe, and M; machines:

My = (Qp,%,A1,Q, 1, F)

1
3

The state space fav/| is Q; = Q*". The transition relation is
3 3

A%((To,’rl, e e Thn—1,50,51,--- Sn_l),C)

= {(U07U1,...'LLn_l,’UO,’Ul,...’U"_l)|
Vie{0...n—1}. u; € Au(ri,c)
AN Vie{0...n—1}. v; € d(s4,0)



In other words, the first components of the state keep track of fiemachines, and the lagtkeep track
of the M; machines.

There is one initial state:

Q(),% = {(QOaQ17~-~Qn—1aQO7QIa-~-Qn—1)}

Going back to our observation that stripgs in MiddleThirds A iff there are stateg; andg; and strings
x andz with |z| = |y| = |2| such tha® (g0, z) = i, 6(¢i,y) = ¢;, andd(q;, z) € Fa, we can construct
F| to recognize this set. In particular, after readingnachineR, must reach statg,, machine)M; must

regéchqj, and matching?; must reach some state in As a mathematical formula:

F% = {(7’0,7’1,...'I’n,1780,81,...8n,1)|
Fi,j. (ro = @) A (si = q5) A (r; € F)

By constructionL (M ) = MiddleThirds A. M, is a NFA. ThereforeMiddleThirds A is regular.

1
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Short Solution:

Let M4 = (Q, %, 4, qo, F) be a DFA that acceptd. Assume tha®) = qo, g1, - - . gn. L€t,

Ai(q,e) = {plFaeX.p=4d(q,a)}

A machine with state transition relatiak, can make a move from staigto g; on anyinput symbol iff
M 4 can move fromy; to ¢; for some input symbol. Define

Ri = (Q7EaA*7{ql}7®)

With any input string, machin®; can reach aften input symbols any state that machif&, can reach
from ¢; for some input string input string of length In a similar fashion, define,

Mi = (szaéa qlaw)

MachineM is the same a8/ 4, and the others are likif 4 except that they have different starting states.
I'll now construct a NFA that acceptdiddleThirdsA. LetQ | = Q?", and let
3

Qo1 = {(q0:q1;---@n-1,90,q1,---qn-1)}

'3

The state transition relation fae/ | is
3

A%((To,rl,---7“71—1,50,51,---Sn—1)70)
= {(UO7U1,...Unfl,’UO,'Ul,...Unflﬂ
Vie{0...n—1}. u; € Ay(ry,0)

AN Vie{0...n—1}. v; €6(s;,0)

Finally, the final states are:

F% = {(TO;rly-~-rn717505517--~3n71)|
32,] (7’0 :qi)/\(si ij)/\(rj S F)

MachmeM| = (Q‘ N A‘ Q. L ,F‘ ) accepts a string; iff there are strings: andz with |z| = |y| = |z|

and stateal, qj € Q such thatMA moves fromyg to ¢; when reading:, from g; to ¢; when reading;, and
from ¢; to some state if” when reading:. This is demonstrated because= ¢; (i.e. machineR, was
able to reacly; in |y| moves);s; = g; (i.e. a machine likel/ 4 starting in state; moved tog; by reading
y); andr; € F (i.e. machineR; started in statg; and reached a state i after|y| moves).



4. (45 points): Let X = {0, 1}3, i.e. the set of tuples consisting of three bits. Farp, c) € 3, define
first((a,b,¢)) = a
second((a,b,c)) = b
third((a,b,c)) =

We overloadirst, second, andthird to strings as shown below:

first(e) = €
first(z - ) first(z) - first(c)
second(e) = ¢
second(xz -¢) = second(z)-second(c)
third(e) = ¢
third(z - c) = third(x) - third(c)

For example, ifs = (0,0,0)(0,0,1)(0,1,0)(0,1,1)(1,0,0)(1,0,1), thenfirst(s) = 000011, second(s) =
001100, andthird(s) = 010101. Fors € {0,1}*, let binary(s) denote the binary value af when the most
significant bit is the first symbol of the string:

binary(e) = 0

binary(0) = 0
binary(1) = 1

binary(x - c) 2 %

binary(z) + binary(c)

For each of the languages described below, state whether or not the language is regular. If the language is
regular, then construct a DFA, NFA, or pattern for the language to justify your conclusion; you may also use any
property of regular languages that we have proven in class or that is proven in the textbook. If the language is
not regular, prove that it is not. Again, you may use any property of regular languages that has been proven in
class or in the textbook.

(a) (15 points): binary addition
B = {w] binary(third(w)) = binary(first(w)) + binary(second(w))}

Solution:
The languageB is regular. My construction uses the same ideas as the “multiply-by-three” FA
from HW1. I'll describe it using an NFA so | don’t have to clutter my solution with transitions to
a “garbage” state.
M = (QvZaAaQOaF)
Q = {w o}
L= {0,1}3Q0 = {q}F = {q}

A(QO; (0707 O)) = {QO}a A(Q1, (0707 1)) = {QO}a
A(qo, (0,1,1)) ={qo}, Alg1,(0,1,0)) ={aq1},
A(QO; (1707 1)) - {QO}7 A(Qla (1707 0)) = {Q1}7
A(QOa(lvlvo)) = {ql}v A(Qla(lvlal)) :{Q1}

Stateq, represents the situation where the carry from the previous bjtasdg; indicates that the
carry from the previous bit i$.

By constructionL(M) = rev(B). Thus,B = rev(L(M)). L(M) is regular because it is recognized
by a NFA. Thus,B is regular because it is the reverse of a regular language.



(b) (15 points): unary numbers

B = {w| Imi,ma,ms.  (first(w) = 1m0lwl-m1)
A (second(w) = 1m20lwl=m2)
A (third(w) = 1ms0lvl=ms))

Solution:

The languageB is regular. The requirementirst(w) = 1™10/*/=™1 corresponds to the regular
expressiony; where:

ar = aj;aqy
a;n = (1,0,0)+(1,0,1) 4+ (1,1,0) +(1,1,1)
a;p = (0,0,0)+(0,0,1)+ (0,1,0) + (0,1,1)

Regular expressions,, andas corresponding respectively second(w) = 120/*l=2 andthird(w) =
1ms0lvl=ms can be defined in the same manner. By constructi®r; «; N as N as. Thus,B is
regular.

(c) (15 points): unary addition

B = {w| Imy,ms. (first(w) = 1m1Qlwl=ma)
A (second(w) = 1m20lwl=m2)
A (thlrd(’LU) _ 1m1+7n20\w|—(m1+m2))}

Solution:
This time, B is not regular. LetC’ = B N (1,1,1)*(0,0,1)*. It is straightforward to show that
C = (1,1,1)%(0,0,1)* (strings inC correspond to the sui + k = 2k). This is equivalent to the
languagea®v* which we have already seen is not regular (see Kozen, lecture 11). Thigsnot
regular. The regular languages are closed under intersection. Thebeforet regular either.
Note: it's perfectly acceptable to show th&tis not regular by using the pumping lemma. | used this
simple homomorphism argument to illustrate that sometimes there are even simpler proofs available.

One more remark: this problem shows that whether or{iet y, z)|z = = + y} is regular depends on the
encoding of the numbers. In particular, binary addition is a regular language but unary addition is not. If
instead of entering corresponding bits of the three numbers together, we first entered all of therbits of
then all of the bits of;, and finally all of the bits of, then the language isn't regular either.



