
CpSc 421 Homework 1 Solutions

1. (20 points)[Kozen HW2, Q2≡ Sipser problem 1.24]
Let s ∈ Σ∗ be a string. Definerev(s) to be thereverseof s:

rev(ε) = ε
rev(sc) = c · rev(s), c ∈ Σ, s ∈ Σ∗

Let sR = rev(s).

Let B be a language. DefineBR = {s|sR ∈ B}. Prove that ifB is regular, thenBR is regular as well.

Solution: Construct an NFA for∆R.
BecauseB is regular, we can represent it with an NFA. If we reverse the arcs between states and swap the
start and accepting states, we get an NFA that recognizes∆R. In the stuff that follows, I’ll formalize this
description and then prove that it works as advertised.
B is an regular language. LetM = (Q,Σ,∆, Q0, F ) be an NFA such thatL(M) = B. Let MR =
(Q,Σ,∆R, QR

0 , FR) with

∆R(q, c) = {p| q ∈ ∆(p, c)}, reverse the arcs
QR

0 = F, use the accepting states ofM as start states
FR = Q0, use the start states ofM as accepting states

Now for the proof.
Define∆̂ : 2Q × Σ∗ → 2Q and∆̂R : 2Q × Σ∗ → 2Q as in Kozen:

∆̂(A, ε) = A

∆̂(A, xc) =
⋃

q∈∆̂(A,x) ∆(q, c)
∆̂R(A, ε) = A

∆̂R(A, xc) =
⋃

q∈∆̂R(A,x) ∆R(q, c)

I’ll make use of two lemmas from Kozen in what follows. For completeness, I’ll state them here:

Lemma 6.1(Kozen, p. 34)
For anyx, y ∈ Σ∗, and for anyA ⊆ Q,

∆̂(A, xy) = ∆̂(∆̂(A, x), y)

Lemma 6.2(Kozen, p. 34)
For anyx ∈ Σ∗, and for anyA1, A2, . . . Ak ⊆ Q,

∆̂(
⋃
i

Ai, x) =
⋃
i

∆̂(Ai, x)

An immediate consequence of this lemma is:

∆̂(A, x) =
⋃
q∈A

∆̂({q}, x)

I make use of this second form in the proof below.

We want to provewR ∈ L(MR) ⇔ w ∈ B. We start off by expanding the definition ofL(MR) – it’s
pretty much the only thing we can do:

wR ∈ L(MR)
⇔ ∆̂R(QR

0 , wR) ∩ FR 6= ∅, acceptance condition for an NFA
⇔ ∆̂R(F,wR) ∩Q0 6= ∅, def.QR

0 andFR

⇔ ∪q∈F ∆̂R(q, wR) ∩Q0 6= ∅, Kozen, lemma 6.2
⇔ ∃qf ∈ F . ∃qs ∈ Q0. qs ∈ ∆̂R({qf}, wR), set theory

(1)
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At this point, we recognize that can we perform the same steps starting withw ∈ B = L(M) to obtain:

w ∈ B ⇔ ∃qf ∈ F . ∃qs ∈ Q0. qf ∈ ∆̂({qs}, w), equivalent to equation 1 (2)

which means that to showwR ∈ L(M) ⇔ w ∈ L(MR) all we need to do is show

qs ∈ ∆̂R({qf}, wR) ⇔ qf ∈ ∆̂({qs}, w)

In English, this says that ifqs is reachable by the backwards automaton,MR starting at stateqf with input
wR, thenqf is reachable by the forwards automaton,M starting in stateqs with input w. In other words,
if you can get fromqf to qs by going backwards, then you can get fromqs to qf by going forwards. We
prove this by induction onw.

Induction Hypothesis,qs ∈ ∆̂R({qf}, wR) ⇔ qf ∈ ∆̂({qs}, w)
Base case,w = ε:

We just note that̂∆R({qf}, ε) = {qf} and likewise for∆̂({qs}, ε) and the rest involves just a few
simple set operations. For those who want to see all the details, here they are:

qs ∈ ∆̂R({qf}, wR)
⇔ qs ∈ ∆̂R({qf}, εR), w = ε

⇔ qs ∈ ∆̂R({qf}, ε), ε = εR

⇔ qs ∈ {qf} def.∆̂R

⇔ qs = qf set theory
⇔ qf =∈ {qs} set theory
⇔ qf ∈ ∆̂({qs}, ε), def.∆̂
�

Induction step,w = xc: Noting that(xc)R = cxR, we need to prove

qs ∈ ∆̂R({qf}, cxR) ⇔ qf ∈ ∆̂({qs}, xc)

Now, we step back and think about what this means:qs ∈ ∆̂R({qf}, cxR) means that we can take a
backwards step fromqf with input c and reach a state, let’s call itu, such that we can go backwards
from u to qs with input xR. Conversely,qf ∈ ∆̂({qs}, xc) means that we can go forwards fromqs

with input x to reach some state,v, and then continue with inputc to reach stateqf . Clearly, the
state that we want to go back to in the first backwards step,u, should be the same as the state that we
reached going forward fromqs with inputx, i.e.v. More succinctly, we wantu = v.
This gives us a strategy. We’ll expand the definitions of∆̂ and∆̂R to separate the processing ofx
andc. We’ll find that there is this state in the middle in each case, i.e. the state thatM reaches after
processingx and the state thatMR reaches after processingc. We will plan to show that can set
these two equal to each other. Matching up forward and backward steps with inputc should involve
the relationship that we’ve defined between∆ and ∆R. Matching up the forward and backward
sequences of steps with inputx should use the induction hypothesis. Here we go:

qs ∈ ∆̂R({qf}, cxR)
⇔ qs ∈ ∆̂R(∆̂R({qf}, c), xR), Kozen, Lemma 6.1
⇔ qs ∈ ∆̂R(∆R(qf , c), xR), def.∆̂R

⇔ qs ∈ ∆̂R({u| qf ∈ ∆(u, c)}, xR), def.∆R

⇔ qs ∈
⋃

u:qf∈∆(u,c) ∆̂R({u}, xR), Kozen, Lemma 6.2

⇔ ∃u. (qf ∈ ∆(u, c)) ∧ (qs ∈ ∆̂R({u}, xR)), set theory

We now recognize thatqs ∈ ∆̂R({u}, xR) matches the induction hypothesis and is therefore equiva-
lent tou ∈ ∆̂({qs}, x). This gives us

qs ∈ ∆̂R({qf}, cxR) ⇔ ∃u. (qf ∈ ∆(u, c)) ∧ (u ∈ ∆̂({qs}, x))
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Now, we can just reverse the steps that we took above to get toqf ∈ ∆̂({qs}, xc). For those who want
to see all of the details, here they are:

qs ∈ ∆̂R({qf}, cxR)
⇔ ∃u. (qf ∈ ∆(u, c)) ∧ (u ∈ ∆̂({qs}, x)), shown above
⇔ qf ∈

⋃
u∈∆̂({qs},x) ∆̂({u}, c), set theory

⇔ qf ∈ ∆̂(∆̂({qs}, x), c), def.∆̂
⇔ qf ∈ ∆̂({qs}, c), Kozen, Lemma 6.1
�

This completes the proof. I’ll summarize it here to pull all of the pieces together:

wR ∈ L(MR) ⇔ ∃qs ∈ Q0. ∃qf ∈ F . qs ∈ ∆̂R({qf}, wR), equation 1
w ∈ B ⇔ ∃qs ∈ Q0. ∃qf ∈ F . qf ∈ ∆̂({qs}, w), equation 2

qs ∈ ∆̂R({qf}, wR) ⇔ qf ∈ ∆̂({qs}, w), shown by induction overw
wR ∈ L(MR) ⇔ w ∈ ∆R, the three steps above

�
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Figure 1: An NFA for recognizingx = 3y

2. (20 points)[Sipser problem 1.26]
Let Σ = {0, 1} × {0, 1}. Defineval : Σ∗ → Z× Z as in the September 12 notes:

val(ε) = (0, 0)
val(s · (a, b)) = (2 ∗ first(val(s)) + a, 2 ∗ second(val(s)) + b)

Let
B = {s ∈ Σ∗|first(val(s)) = 3 ∗ second(val(s))}

Show thatB is regular.

Solution:
First, think about how you would solve this problem manually. Given a string, e.g.w = (1, 0)(0, 1)(0, 0)(1, 0)(1, 1),
you could extract the two binary numbers, let’s call themx andy, with x = 10011, andy = 01001. We
want to see ifx = 3 ∗ y. You might then convert them both to decimal to getX = 19 andy = 9 and
conclude that this particular string is not in the language. Although constructing an automaton that con-
verts binary to decimal and does decimal arithmetic is possible, it would be way too tedious. Let’s do the
arithmetic in binary instead.

To compute3 ∗ y, we can shifty one place to the left to get2y and then calculate the sum ofy and2y to
get3y. This is basically the approach that we’ll take. Here are a few observations:

(a) We don’t actually output3y, we just compare our expectation with the value ofx.

(b) Even though the problem specifiesx andy as input with their most-significant bits first, it’s easier
(at least more “natural”) to perform the addition starting with the least-significant bit and working up
to the most significant. I’ll describe a solution that works this way. In other words, my automaton
will recognize∆R. This is OK. In problem 1, we showed that the regular languages are closed under
reversal. Thus, showing that∆R is regular establishes thatB is regular.

(c) The automaton needs to keep track of two bits of information with each transition. One of these bits
remembers the previous bit ofy so we can shifty one place to the left. The other bit remembers the
carry from adding2y andy together.

Figure 1 shows the state transition diagram for my machine. It’s an NFA because I didn’t clutter the
diagram with arcs from each state to a “garbage” state when the machine encounters a bit which violates
thex 6= 3y rule. Each state is labeled as a tuple(carry, prev-bit) wherecarry is the carry (0 or 1) from the
addition to compute3y for the previous step, andprev-bit is the bit fory from the previous step.
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3. (20 points)Let Σ be an alphabet, and let

half(ε) = ε
half(c) = c, c ∈ Σ

half(xc1c2) = half(x)c1, c1 ∈ Σ, x ∈ Σ∗

Let B ⊆ Σ∗ be a language. Define

B
1
2 = {x ∈ Σ∗| ∃y ∈ Σ∗. (y ∈ B) ∧ (x = half(y))}

Prove that ifB is regular, thenB
1
2 is regular as well.

Oops:
The definition ofhalf isn’t quite what I intended. With the definition above, you can show:

half(ε) = ε
half(a) = a

half(ab) = a
half(abc) = ab

half(abcd) = ac
half(abcde) = abd

half(abcdef) = acf

which is kind of awkward because it treats even and odd length strings differently. On the other hand, it
only adds one extra step to the solution. Too bad no one caught it earlier to claim a bug bounty. Here it
goes.

Solution to the original problem:
Let MB = (QB ,Σ, δB , q0, F ) be a DFA that recognizes languageB.
The main idea in my solution is to construct an NFA that simulates two moves ofMB for every symbol
that it reads. The first move corresponds to the symbol read, and the second uses non-determinism to guess
a symbol that goes into a stringy such thathalf(y) = x andy ∈ B. As noted above, there’s a bit of a
complication at first to handle the difference between odd and even length stringsy. All we have to do
is add a non-deterministic choice for whether or not a “guess” symbol is included after reading the first
symbol. If the eventual length ofy is even, then we guess a symbol after every symbol inx. If the eventual
length ofy is odd, we guess a symbol fory after every symbol ofx except for the first one.
To model guessing a symbol, we define∆2 as shown below:

∆2(q, c) = {q′|∃d. q′ = δ(δ(q, c), d)}

As I’ll show below in the proof, the non-determinism of the NFA handles the existential quantification of
y in the definition ofB

1
2 .

Let k = |QB |, and assume that the states ofMB areq0, q1, . . . , qk−1. For the machine that recognizes
B

1
2 , I’ll add a new state,qk to take the place of the start state and handle the odd/even anomaly described

above. Here’s my NFA that recognizesB
1
2 :

M 1
2

= (Q 1
2
,Σ,∆ 1

2
, {qk}, F 1

2
)

Q 1
2

= {qi|0 ≤ i ≤ k}
∆ 1

2
(qi, c) = ∆2(qi, c), if 0 ≤ i < k

= {δ(q0, c)} ∪∆2(q0, c)
F 1

2
= F ∪ {qk|if q0 ∈ F}

We define∆̂ 1
2

and δ̂ in the usual way. A property of∆ 1
2

that we will use is that there are no transitions
into stateqk. In other words, for all statesq ∈ Q 1

2
, and all symbolsc ∈ Σ, ∆ 1

2
(q, c) ⊆ QB . Likewise, for

any stringw ∈ Σ+, ∆̂ 1
2
(q, w) ⊆ QB .
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We will also make use of the following property ofhalf:

|y|
2 ≤ |half(y)| ≤ |y+1|

2

The proof is by induction on the length ofy.

case|y| = 0: This meansy = ε. Therefore,half(y) = ε, and|half(y)| = 0 = |y|
2 which satisfies the

claim.

case|y| = 1: This meansy = c, for somec ∈ Σ. Therefore,half(y) = c, and|half(y)| = 1 = |y|+1
2

which satisfies the claim.

case|y| > 1: Choosex, c, andd such thaty = x · cd. From the definition ofhalf, half(y) = half(x) · c.
We have

1. half(y) = half(x · cd), = half(x) · c, choices ofx, c, andd; and def. half
2. |x|

2 ≤ |half(x)| ≤ |x|+1
2 , induction hypothesis

3. |x|+2
2 ≤ |half(x) + 1| ≤ |x|+3

2 , add 1 to everything

4. |x·cd|
2 ≤ |half(x) · c| ≤ |x·cd|+1

2 , def. |w|
5. |y|

2 ≤ |half(y)| ≤ |y|+1
2 , y = x · cd, half(y) = half(x) · c

BecauseM 1
2

is an NFA,L(M 1
2
) is regular, Now, I’ll prove thatL(M 1

2
) = B

1
2 which will prove thatB

1
2

is regular.

The proof, of course, is by induction on the length ofx. We need an induction hypothesis. In particular,
we need to keep track of whereM 1

2
goes as it reads a string. Thus, our induction hypothesis describes a

relationship between states ofM 1
2

and states ofM .

Induction Hypothesis:

(q′ ∈ ∆̂ 1
2
(qk, x)) ∨ (x = ε) ⇔ (∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)) ∨ (x = ε)

In English, the induction hypothesis says that ifM 1
2

can reachq by readingx, then there is somey
with x = half(y) such thatM reachesq′ when readingy. The disjuncts for(x = ε) allow the first
step to be special.

Casex = ε:
This case is easily shown becausex = ε ensures that both sides of the claimed equivalence are true.

Case|x| = 1:
Becausex 6= ε, we can simplify the claim to

q′ ∈ ∆̂ 1
2
(qk, x) ⇔ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

We will use start with this simplified version here and in the case for the induction step below. Because
|x| = 1, x consists of a single symbol. We’ll writec to denote this symbol. From the definitions of
∆̂ 1

2
and∆ 1

2
, we obtain

q′ ∈ ∆̂ 1
2
(qk, x) ⇔ (q′ = δ(q0, c)) ∨ (q′ ∈ ∆ 1

2
(q0, c))

We prove the⇒ and⇐ directions separately.

⇒
We need to prove:

((q′ = δ(q0, c)) ∨ (q′ ∈ ∆ 1
2
(q0, c))) ⇒ (∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′))

We consider theq′ = δ(q0, c) andq ∈ ∆ 1
2
(q0, c) cases separately.
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q′ = δ(q0, c):
Let y = c. From the definition ofhalf, half(y) = c = x. Furthermore,̂δ(y) = δ(q0, c) = q′.
Thus,

q′ = δ(q0, c) ⇒ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

q′ ∈ ∆ 1
2
(q0, c):

Expanding the definition of∆ 1
2
, we obtain∃d. q′ = δ(δ(q0, c), d). Choosed such thatq′ =

δ(δ(q0, c), d), and lety = cd. From the definition ofhalf, half(y) = c = x. Furthermore,
δ̂(y) = δ(δ(q0, c), d) = q′.

q′ ∈ ∆ 1
2
(q0, c) ⇒ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

Combining these, we conclude((q′ = δ(q0, c)) ∨ (q′ ∈ ∆ 1
2
(q0, c))) ⇒ (∃y. (x = half(y)) ∧

(δ̂(q0, y) = q′)) as required.
⇐

We need to prove:

((q′ = δ(q0, c)) ∨ (q′ ∈ ∆ 1
2
(q0, c))) ⇐ (∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′))

Let y be a string such that(x = half(y))∧ (δ̂(q0, y) = q′). By the case assumption,x = c. Thus,
half(y) = c. From the definition ofhalf, we get that eithery = c or there is some symbold such
thaty = cd. We consider these two cases separately.
y = c:
From the definition ofhalf, we concludex = c. We also have:q′ = δ̂(q0, y) = δ(q0, c), which
establishes the claim.

y = cd:
From the definition ofhalf, we concludex = c. We also have:q′ = δ̂(q0, y) = δ̂(q0, cd) =
δ(δ(q0, c), d), which establishes∃d. q′ = δ(δ(q0, c), d). Thereforeq′ ∈ ∆2(q0, c) and thus
q′ ∈ ∆ 1

2
(q0, c) as required.

We have now established,((q′ = δ(q0, c)) ∨ (q′ ∈ ∆ 1
2
(q0, c))) ⇐ (∃y. (x = half(y)) ∧

(δ̂(q0, y) = q′)) as required.
Having shown the⇒ and⇐ proves,

q′ ∈ ∆̂ 1
2
(qk, x) ⇔ (q′ = δ(q0, c)) ∨ (q′ ∈ ∆ 1

2
(q0, c))

and completed the|x| = 1 case.
Case|x| > 1:

Let x = wc wherew ∈ Σ∗ andc ∈ Σ. Becausex 6= ε, we again simplify the claim to:

q′ ∈ ∆̂ 1
2
(qk, x) ⇔ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

q′ ∈ ∆̂ 1
2
(q0, x)

1. ⇔ q′ ∈ ∆̂ 1
2
(q0, w · c), choice ofw andc

2. ⇔ q′ ∈ ∪qj ∈ ∆̂ 1
2
(q0, w)∆ 1

2
(qj , c), def.∆̂ 1

2

3. ⇔ ∃qj . (qj ∈ ∆̂ 1
2
(q0, w)) ∧ (q′ ∈ ∆ 1

2
(qj , c)), set theory

4. ⇔ ∃qj ∈ QB . (qj ∈ ∆̂ 1
2
(q0, w)) ∧ (q′ ∈ ∆ 1

2
(qj , c)), property of∆ 1

2
, ∆̂ 1

2

5. ⇔ ∃qj ∈ QB . ∃v. (w = half(v)) ∧ (qj = δ̂(q0, v)) ∧ (q′ ∈ ∆ 1
2
(qj , c)), induction hypothesis

6. ⇔ ∃qj ∈ QB . ∃v. (w = half(v)) ∧ (qj = δ̂(q0, v)) ∧ ∃d. q′ = δ(δ(qj , c), d) induction hypothesis

We complete the proof by proving the⇒ and⇐ cases separately.
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⇒ We need to show

q′ ∈ ∆̂ 1
2
(qk, x) ⇒ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

Assumeq′ ∈ ∆̂ 1
2
(qk, x). Chooseqj , v, and d such thatw = half(v), qj = δ̂(q0, v), and

q′ = δ(δ(qj , c), d). As shown in step 3, suchqj , v, andd are guaranteed to exist. Lety = v · cd.
We have:

δ̂(q0, y)
7. = δ̂(q0, v · cd), choice ofy
8. = δ(δ(δ̂(q0, v), c), d), def. δ̂
9. = δ(δ(qj , c), d), step 3:δ̂(q0, v) = qj

10. = q′, choice ofq′

Furthermore,

half(y)
11. = half(v · cd), choice ofy
12. = half(v) · c, def.half
13. = w · c, step 3:half(v) = w
14. = x, choice ofw andc: x = w · c

This establishes

q′ ∈ ∆̂ 1
2
(qk, x) ⇒ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

as required.
⇐ We need to show

q′ ∈ ∆̂ 1
2
(qk, x) ⇐ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′)

Assume∃y. (x = half(y))∧ (δ̂(q0, y) = q′). Choosey such that(x = half(y))∧ (δ̂(q0, y) = q′).
Because|x| > 1, |y| > 2. Choosev, c, andd such thaty = v · cd. Let qj = δ̂(q0, v). We have:

15. half(v · cd) = half(v) · c, def.half
16. half(y) = x, y = v · cd, half(v) = w, x = w · c
17. qj ∈ ∆̂ 1

2
(qk, v), induction hypothesis

18. q′ = δ(δ(qj , c), d) def. δ̂, q′ = δ̂(q0, v · cd)
19. q′ ∈ ∆ 1

2
(qj , c)) def.∆ 1

2

20. q′ ∈ ∆̂ 1
2
(qk, x)) def.∆̂ 1

2
, x = half(v · cd)

This establishes the⇐ case.
Having proven the⇒ and⇐ cases, we’ve completed to proof for|x| > 1. Having completed proofs
for |x| = 0, |x| = 1, and|x| > 1, we’ve handled all possible stringsx, which completes the proof of

(q′ ∈ ∆̂ 1
2
(qk, x)) ∨ (x = ε) ⇔ ∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′) ∨ (x = ε)

We now use this to show thatx ∈ L(M 1
2
) ⇔ x ∈ B

1
2 .

casex ∈ L(M 1
2
): This means that̂∆ 1

2
(qk, x) ∩ F 1

2
6= ∅. If x = ε, thenqk is accepting, which

means thatq0 is accepting, and thereforeε ∈ B and ε ∈ B
1
2 . Otherwise, letq′ be a state in

∆̂ 1
2
(qk, x) ∩ F 1

2
. Becausex ∈ Σ+, q′ ∈ QB which means thatq′ ∈ F (becauseF 1

2
∩QB = F ).

From our induction result,∃y. (x = half(y)) ∧ (δ̂(q0, y) = q′). Let y be a string such that
(x = half(y)) ∧ (δ̂(q0, y) = q′). Becauseq′ ∈ F , y ∈ B. Therefore,x ∈ B

1
2 as required.
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casex ∈ B
1
2 : If x = ε, then q0 is an accepting state ofMB and qk is an accepting state of

M 1
2
. This means thatx ∈ L(M 1

2
) as required. Otherwise, lety be a string such that(x =

half(y)) ∧ (δ̂(q0, y) ∈ F ). Such ay exists becausex ∈ B
1
2 . Let q′ = δ̂(q0, y). From our

induction result,q′ ∈ ∆̂ 1
2
(qk, x), andq′ ∈ F 1

2
becauseq′ ∈ F andF ⊆ F 1

2
. Thus,x ∈ L(M 1

2
).

�
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4. (20 points)The textbook for CpSc 121 (Rosen:Discrete Mathematics and Its Applications,5th edition, p. 12),
suggests searching the web for universities in Mexico by looking for pages that contain the word “MEXICO”
but not the word “NEW” (to exclude pages about universities in New Mexico). He writes his search as

(MEXICO ANDUNIVERSITY) AND NOTNEW

Searches are assumed to be case-insensitive.

(a) ( 5 points) What is wrong with Rosen’s proposed search criterion? Give an example of text that could
appear on a web page for which this search would do something different than its informal description.

(b) (10 points) Now, write a regular expression that much better matches the informal specification. In partic-
ular, it shouldn’t have the problem that you identified for Rosen’s query in part (a).

(c) ( 5 points) Presumably, you haven’t solved the natural language understanding problem, so your expres-
sion will also fail to meet the informal specification for some web pages. Describe a web page for which
your regular expression does the “wrong” thing.

(d) ( 2 points, extra credit) Write a program in a language for which there is a compiler on the CS department
undergraduate machines that solves the natural language understanding problem. This program should be
able to take as input books, journal articles, and other English text and answer questions posed in natural
English about their contents.

Solution:

(a) What’s wrong with Rosen’s query?
Rosen’s criterion rejects any web page that includes the word “NEW”. For example:

“Jalisco was originally part of New Galicia before it became part of greater Mexico in
1821.. . . So important to the area is tequila, that the local university offers a course in tequila
engineering.”

From: http://www.ianchadwick.com/tequila/country.html
(b) Write a regular expression to get a better query.

My solution is the expressionα defined below:

α = @(αM@αU + αU@αM )@
αM = α∼NEW α∗

WSMEXICO
αU = UNIVERSITY

α∼NEW = α∼W + α∼EW + α∼NEW + (#∩ ∼ αWS)α∼NEW
α∼W = #∩ ∼ (W + αWS)
α∼E = #∩ ∼ E
α∼N = #∩ ∼ N
αWS = any white space characters

The@s at the beginning and end ofα allow the matches forMEXICO andUNIVERSITY to appear
anywhere in the document. Furthermore,α appears the matches forMEXICO andUNIVERSITY to
appear in either order and to be separated by any amount of text in between.
The expression forα∼NEW makes sure that the wordMEXICO in the match is not immediately pre-
ceded by the wordNEW. I took some care to handle the white space between the word that precedes
MEXICO and the word that precedesNEW. Since Rosen didn’t talk about white space, it’s OK if a
solution doesn’t address this.

(c) Describe a page for which this expression does the “wrong” thing.
This sentence matches the regular expression that I gave, but it doesn’t pertain to a university in
Mexico. When I put the solutions on the course web, this will be an example of a page for which the
regular expression will generate a false positive.

(d) Extra credit: solve the natural language understanding problem.
Not attempted.
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5. (20 points)Let M be a two-input-tape finite automaton as described in the September 14 lecture notes. Define

L∀(M) =
{

s1 ∈ Σ∗
1

∣∣∣ ∀s2 ∈ Σ|s1|
2 . weave(s1, s2) ∈ L(M)

}
We call a machine with this acceptance condition a universally quantified, two-input-tape, finite automaton.

(a) (10 points) Prove thatL∀(M) is regular.

(b) (10 points) In the September 14 notes, we showed that we could simplify the presentation of a state transi-
tion diagram for an existentially quantified, two-input-tape finite automaton by dropping theΣ2 component
of each label and omiting arcs to terminally non-accepting states. The equivalent simplifications for uni-
versally quantified, two-input-tape, finite automaton are dropping theΣ2 component of each label and
omittng arcs to terminally accepting states. If a state has no outgoing arc for some input symbol, it is
assumed that the machine transitions to a terminally accepting state.

The automaton corresponding to the simplified state-transition diagram is called a∀-automaton (pro-
nounced “for all automaton”). This is a generally accepted technical term (whereas I made up the names
“existentially-” and “universally-quantified, two-input-tape, finite automata” just so we could talk about
them).

Draw the state transition diagram for a∀-automaton that accepts a strings ∈ {a, b}∗ iff:

every ‘a’ is followed immediately by a ‘b’;

and the number of ‘a’ symbols in the input is even;

and the number of ‘b’ symbols in the input is a multiple of three.

Solution:

(a) Prove that L∀(M) is regular.
I will first show that∼ L∀(M) is regular.

∼ L∀(M) =
{

s1 ∈ Σ∗
1

∣∣∣ ∼ ∀s2 ∈ Σ|s1|
2 . weave(s1, s2) ∈ L(M)

}
=

{
s1 ∈ Σ∗

1

∣∣∣ ∃s2 ∈ Σ|s1|
2 . weave(s1, s2) ∈∼ L(M)

}
AssumeM = (Q, Σ1,Σ2, δ, q0, F ) and defineM ′ = (Q,Σ1,Σ2, δ, q0,∼ F ). We now have

∼ L∀(M) = L∃(M ′)

In the Sept. 14 notes, we showed thatL∃(M ′) is simply the language of an NFA; thus, it is regular.
Therefore,∼ L∀(M) is regular. Because the regular languages are closed under complement,L∀(M)

is regular as well.

(b) Draw the state transition diagram. . .
See figure 2. Note that the non-determinism in this machine is the “forall” form described above,
not the “exists” form that we typically use in class. This machine has three start states. If a string
w is not in the language, then at least one of the three component machines must reject it. The∀
non-determinism selects a component machine that will rejectw and the machine runs from there. On
the other hand, ifw is in the language, then it will be accepted no matter what component machine is
chosen.
To keep the duality with existentially quantified machines, states that have no successors for some
input symbol transition to a permanently accepting state (as described above). Thus, I had to include
a “garbage” state for the machine that checks that every ‘a’ is followed immediately by a ‘b’.
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Figure 2: A∀-automaton for problem 5b

Shorter Proofs

The proofs for problems 1 and 3 were rather long. That is in part because I included many explanatory comments and
showed lots of details. I assume that this will help some students who want to study the proofs. On the other hand,
this could be intimidating if you get the idea that you need to write multiple page proofs for your homework solutions.
This isn’t necessary. I will give a “short” proof for each of these two problems. In each case, I’ll take a different
approach to solving the problem as well, just to give you more examples of how to use the concepts that we’ve covered
in the class so far.

1. Prove that regular languages are closed under reversal.
Let B be a regular language. Because it is regular, there is a regular expression,α that recognizes it. We define
rev(α) as shown below:

rev(∅) = ∅
rev(ε) = ε
rev(c) = c

rev(α1 + α2) = rev(α1) + rev(α2)
rev(α1 · α2) = rev(α2) · rev(α1)

rev(α∗) = rev(α)∗

We now prove by induction on the structure ofα thatL(rev(α)) = (L(α))R.

α = ∅:
In this case, bothL(α) andL(rev(α)) are the empty language and the claim holds.

α = ε:
In this case, bothL(α) andL(rev(α)) contain only the empty string. The empty string is its own reverse;
so, the claim holds.

α = c:
In this case, bothL(α) andL(rev(α)) contain only the string consisting of a single symbolc. The string
c is its own reverse; so, the claim holds.

α = α1 + α2:
Considerw ∈ L(α). Then eitherw ∈ L(α1) or w ∈ L(α2). In the first case, thenwR ∈ L(rev(α1));
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therefore,wR ∈ L(rev(α). An analogous argument shows that ifw ∈ L(α2) thenwR ∈ L(rev(α2)) ⊆
L(rev(α)).
Now considerwR ∈ L(rev(α)). Then eitherwR ∈ L(rev(α1)) or w ∈ L(rev(α2)), and arguments
analogous to those above show thatw ∈ L(α) as required.

α = α1 · α2:
My proof uses the fact thatyR · xR = (xy)R. I’ll prove that by induction first (i.e. a lemma), and then get
on with the main proof. The proof is by induction ony:

Induction hypothesis:yR · xR = (xy)R.

Base case:y = ε.
yR · xR = ε · xR = xR = (xε)R = (xy)R

Induction step:y = zc.
(xy)R

= (xzc)R, y = zc
= c(xz)R, def. rev
= czRxR, induction hypothesis
= (zc)RxR, def. rev
= yR · xR, y = zc
�

Now, we do the main proof for this case. Ifw ∈ L(α) then there are stringsx andy such thatw = xy,
x ∈ L(α1) andy ∈ L(α2). By the induction hypothesis,xR ∈ L(rev(α1)) andyR ∈ L(rev(α2)). Thus,
yRxR ∈ L(rev(α)) becauserev(α) = rev(α2) · rev(α1).
The proof that ifwR ∈ L(rev(α)) thenw ∈ L(α) is equivalent to the one above.

α = α∗
1:

If w ∈ L(α∗
1), then there existsk such thatw ∈ L(αk

1); likewise if wR ∈ L(rev(α1)∗). This leads to a
proof by induction onk:

Induction hypothesis:w ∈ L(αk
1) ⇔ wR ∈ L(rev(α1)∗).

Base case:k = 0.

w ∈ L(α0
1) ⇔ w ∈ L(ε) ⇔ w = ε ⇔ wR = ε ⇔ wR ∈ L(rev(α1)0) ⇔ wR ∈ L(rev(α1)∗)

Induction step:k > 0.

w ∈ L(αk
1)

⇔ w ∈ L(αk−1
1 α1), def.αk

1 , k > 0
⇔ wR ∈ L(rev(α1)rev(α1)k−1), induction (onα1) hypothesis
⇔ wR ∈ L(rev(α1)k), def.αk

1 , k > 0
⇔ wR ∈ L(rev(α1)∗), def. asteration
⇔ wR ∈ L(rev(α)), rev(α∗

1) = rev(α1)∗

�
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3. Prove that if B is regular, then so ishalf (B).
First, I’ll take this occasion to fix thehalf function. Let

half(ε) = ε
half(c) = c, c ∈ Σ

half(x · c1c2) = half(x)c2, c1, c2 ∈ Σ, x ∈ Σ∗

and I’ll assume thathalf is defined using this version ofhalf. abcdefg

In the September 26 lecture, we saw that the regular languages are closed under homomorphisms and inverse
homomorphisms (see Kozen lecture 10). LetB be a language overΣ, and letρ be a symbol not inΣ. Let
Σ2 = (Σ∪ρ)×Σ. The purpose forρ is to provide a padding for the first symbol of a string inΣ∗

2 if we’re trying
to match it with an odd-length string inΣ. Let H1 : Σ2 → Σ∗ be the homomorphism

H1((c1, c2)) = c1c2, if c1 6= ρ
= c2, if c1 = ρ

Because the regular languages are closed under inverse homomorphism,H−1
1 (B) is a regular language. This

isn’t quite what I want because it can haveρ symbols anywhere. I want to only allowρ symbols in the first
symbol of the string. There is a regular language that only recognizes strings inΣ∗

2 that either have noρ
components, or that only have a singleρ as the first component of the first symbol. LetBρ be this language.
The regular languages are closed under intersection. Therefore,B1 = H−1

1 (B) ∩Bρ is regular.

Now, I want to discard every other symbol in the original string. This corresponds to discarding the first com-
ponent of each symbol in a string overΣ∗

2. Let

H2((c1, c2)) = c2

Let B2 = H2(B1). Because the regular languages are closed under homomorphism,B2 is regular.

I claim thatB2 = B
1
2 . To prove this, I will show

{w|∃z ∈ Bρ. (H1(z) = y) ∧ (w = H2(z)} ⇔ {half(y)}

The proof is by induction on the length ofy.

|y| = 0
This meansy = ε. The onlyz ∈ Bρ with H1(z) = y is ε. Thus, ifx ∈ {w| . . .}, thenx = ε = half(y).

|y| = 1
This means thaty consists of a single symbol fromΣ. Let y = c. The onlyz ∈ Bρ with H1(z) = y is
(ρ, c). Thus, ifx ∈ {w| . . .}, thenx = c = half(y).

|y| > 1
Let y = v · c1c2. By the induction hypothesis, there is someu ∈ Bρ such thatH1(u) = v and for every
suchu, H2(u) = half(v). Let u be some such string inBρ. Let, z = u · (c1, c2). From the definition of
H1, H1(z) = y, and we conclude:H2(z) = H2(u) · c2 = half(v) · c2 = half(y).
Now let z be any string inΣ∗

2 such thatH1(z) = y. Becausey 6= ε, z 6= ε. Let z = u · (d1, d2). Because
|y| > 1, d1 6= ρ (a simple argument by contradiction: ifd1 = ρ, thenu = ε which meansy = d2 and
|y| = 1). By the choice ofz, y = H1(z) = H1(u) · d1d2. ThusH1(u) = v, d1 = c1, andd2 = c2. By the
induction hypothesis,H2(u) = half(v). Thus,

H2(z) = H2(u · c1c2) = H2(u) · c2 = half(v) · c2 = half(v · c1c2) = half(y)

�

We have shown thatB2 = {x|∃y ∈ B. x = half(y)}. In other words,B2 = B
1
2 . The languageB2 is regular by

its construction. Thus,B
1
2 is regular.
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