CpSc421

Homework 1 Solutions

1. (20 points)[Kozen HW2, Q2= Sipser problem 1.24]

Lets

Lets®R =

€ ¥* be a string. Defineev(s) to be thereverseof s:
revie) = ¢
rev(sc) = c-rev(s), ce€X, seX*

rev(s).

Let B be a language. DefinB® = {s|s™ € B}. Prove that ifB is regular, therB* is regular as well.

Solution: Construct an NFA foA.

BecauseB is regular, we can represent it with an NFA. If we reverse the arcs between states and swap the
start and accepting states, we get an NFA that recogriZesin the stuff that follows, I'll formalize this
description and then prove that it works as advertised.

B is an regular language. L&t/ = (Q,%, A, Qo, F) be an NFA such that(M) = B. Let M? =

(Q,%, AR QF, FR) with

AR(q,e) = {p|q€ Alp,c)}, reverse the arcs
QF = F, use the accepting states if as start states
FR = Qo, use the start states 6f as accepting states

Now for the proof.
DefineA : 2@ x ¥* — 29 andAR : 29 x ¥* — 22 as in Kozen:

Adg = A
(A ‘TC) = UqGA(A,a:) A(q’ C>
AR(Ae) = A
AR(A’ ‘TC) = UqEAR(A,a:) AR(Q’ C)

I'll make use of two lemmas from Kozen in what follows. For completeness, I'll state them here:

Lemma 6.XKozen, p. 34)
For anyx,y € ¥*, and for anyA C Q,

A(Av Iy) = A(A(Av 1,‘)7 y)

Lemma 6.ZKozen, p. 34)
For anyz € ¥*, and for anyA;, As, ... Ax C Q,

AlJ4Aix) = [JA4i,2)
7 %
An immediate consequence of this lemma is:

A(Aam) = U A({Q}vx)
qeEA

| make use of this second form in the proof below.

We want to proves™ € L(MR®) < w € B. We start off by expanding the definition &{ M=) — it's
pretty much the only thing we can do:

w® € L(MR)
& ARQF,wR)NFR #0, acceptance condition for an NFA
& ARFEWR)NQy # 0, def. QR and F® 1)
& UgerAR(q,w®)N Qo # 0, Kozen, lemma 6.2
& Fgp € F.3qs € Qo. ¢s € AR({gs},wR), settheory



At this point, we recognize that can we perform the same steps startingvet3 = L(M) to obtain:
weB & dgreF.3¢,€ Qo qr € A({qs}, w), equivalent to equation 1 (2)
which means that to show™ € L(M) < w € L(M™) all we need to do is show

gs € AR({Qf}’wR) < g5 € A({QS}7w)

In English, this says that if; is reachable by the backwards automatifi? starting at state; with input
w?®, theng; is reachable by the forwards automatd,starting in statey; with inputw. In other words,
if you can get fromy; to ¢ by going backwards, then you can get frggto ¢, by going forwards. We
prove this by induction om.
Induction Hypothesisz, € AR ({g;},w®) < q¢; € A({g:}, w)
Base casepy = €:
We just note thal R ({qs},¢) = {qs} and likewise forA({g.},¢) and the rest involves just a few
simple set operations. For those who want to see all the details, here they are:

¢s € AR ({gs}, w®)

& ¢ € AR({gs},®), w=e

& ¢ € AR({gr}e), e=€r

& g € {qs} def. AR
S s =qf set theory
& g =€ {gs} set theory
& gqr € A({gs},e), def. A

O

Induction stepw = zc: Noting that(zc)® = cz™, we need to prove
qs € AR({qf}vch) < qf € A({qs},$0)

Now, we step back and think about what this meapsz AR ({q;},cz®) means that we can take a
backwards step from; with inputc and reach a state, let’s calkit such that we can go backwards
from u to g with input 2. Converselyg; € A({qs},xc) means that we can go forwards fram
with input = to reach some state, and then continue with input to reach statg;. Clearly, the
state that we want to go back to in the first backwards stephould be the same as the state that we
reached going forward fromy, with inputz, i.e.v. More succinctly, we want = v.

This gives us a strategy. We'll expand the definitions\oéind AR to separate the processing:of
andc. We'll find that there is this state in the middle in each case, i.e. the statdthatches after
processinge and the state that/® reaches after processirg We will plan to show that can set
these two equal to each other. Matching up forward and backward steps wittciapatld involve
the relationship that we've defined betwednand A®. Matching up the forward and backward
sequences of steps with inpushould use the induction hypothesis. Here we go:

¢s € A% ({gs},ca™)

& g € AR(AR({gs},0),2R), Kozen, Lemma 6.1
& g5 € AR(AR(gys,c),2R), def. A®

< s € AR({ul qf € A(uvc)}va)v def. AR

& 0 € Upigrenquo AR({u},iJcR), Kozen, Lemma 6.2
& Ju. (g5 € A(u,¢)) A (gs € AR({u},2™)), settheory

We now recognize that € AR({u}, 2™) matches the induction hypothesis and is therefore equiva-
lenttou € A({gs}, ). This gives us

s € AR({qf},CxR) = (qf € A(u,C)) A (u € A({QS}JC))



Now, we can just reverse the steps that we took above to ggte&oﬁ({qs}, xc). For those who want
to see all of the details, here they are:

qs € AR<{Qf}7 CxR) R
Ju. (g5 € A(u,€)) A (v € A({gs},x)), shown above

Ot e

qaf € é(A({qs},x),C), def. A
ar € A({gs}.©), Kozen, Lemma 6.1

This completes the proof. I'll summarize it here to pull all of the pieces together:

s

O

wR € L(MT)
) weE B
e AR ({gs},u®)
wR e L(MT)

=

=
=
=

3¢, € Qo. 35 € F. qs € AR({gs},wR), equation 1

3¢s € Qo- 3¢5 € F. q5 € A({gs}, w), equation 2

¢ € A({gs}, w), shown by induction ovew
w € AR, the three steps above
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Figure 1: An NFA for recognizing = 3y

2. (20 points)[Sipser problem 1.26]
LetX = {0,1} x {0,1}. Defineval : ¥* — Z x Z as in the September 12 notes:

val(e) = (0,0)
val(s - (a,b)) (2 « first(val(s)) + a, 2 x second(val(s)) + b)

Let
B = {se X*first(val(s)) = 3 « second(val(s))}

Show thatB is regular.

Solution:
First, think about how you would solve this problem manually. Given a stringye-g(1,0)(0, 1)(0,0)(1,0)(1, 1),
you could extract the two binary numbers, let’s call themndy, with z = 10011, andy = 01001. We
want to see ifr = 3 x y. You might then convert them both to decimal to gét= 19 andy = 9 and
conclude that this particular string is not in the language. Although constructing an automaton that con-
verts binary to decimal and does decimal arithmetic is possible, it would be way too tedious. Let's do the
arithmetic in binary instead.
To compute3 * i, we can shifty one place to the left to g&ty and then calculate the sum gfand2y to
get3y. This is basically the approach that we'll take. Here are a few observations:

(a) We don't actually outpuy, we just compare our expectation with the value:of

(b) Even though the problem specifiesandy as input with their most-significant bits first, it's easier
(at least more “natural”) to perform the addition starting with the least-significant bit and working up
to the most significant. I'll describe a solution that works this way. In other words, my automaton
will recognizeA™. This is OK. In problem 1, we showed that the regular languages are closed under
reversal. Thus, showing that™® is regular establishes thatis regular.

(c) The automaton needs to keep track of two bits of information with each transition. One of these bits
remembers the previous bit gfso we can shifyy one place to the left. The other bit remembers the
carry from addin@y andy together.

Figure 1 shows the state transition diagram for my machine. It's an NFA because | didn't clutter the
diagram with arcs from each state to a “garbage” state when the machine encounters a bit which violates
thex # 3y rule. Each state is labeled as a tufgarry, prev-bit) wherecarry is the carry (0 or 1) from the
addition to comput@y for the previous step, amatev-bitis the bit fory from the previous step.



3. (20 points)Let X be an alphabet, and let

half(e) = ¢
half(c) = ¢, cex
half(zc,ce) = half(z)c;, ¢, €%, xe¥*

Let B C ¥* be a language. Define
B: = {zeX*|3yex*. (ye B)A(z=half(y)}

Prove that ifB is regular, therB2 is regular as well.

Oops:
The definition ofhalf isn’t quite what | intended. With the definition above, you can show:
half(e) = ¢
halfa) = a
half(ab) = a
half(abc) = ab
half(abcd) = ac
half(abcde) = abd
half(abcdef) = acf

which is kind of awkward because it treats even and odd length strings differently. On the other hand, it
only adds one extra step to the solution. Too bad no one caught it earlier to claim a bug bounty. Here it
goes.

Solution to the original problem:
Let Mg = (QB,%,dB, g, F') be a DFA that recognizes language
The main idea in my solution is to construct an NFA that simulates two movéggfor every symbol
that it reads. The first move corresponds to the symbol read, and the second uses non-determinism to guess
a symbol that goes into a stringsuch thathalf(y) = = andy € B. As noted above, there’s a bit of a
complication at first to handle the difference between odd and even length gjrifijswe have to do
is add a non-deterministic choice for whether or not a “guess” symbol is included after reading the first
symbol. If the eventual length gfis even, then we guess a symbol after every symbael ifithe eventual
length ofy is odd, we guess a symbol fgrafter every symbol of except for the first one.
To model guessing a symbol, we defig as shown below:

As(g;¢) = {d'|3d. ¢ =4(6(¢,¢),d)}

As I'll show below in the proof, the non-determinism of the NFA handles the existential quantification of
y in the definition of Bz .

Let £ = |@g|, and assume that the statesidf; areqo, ¢1,...,qx—1. For the machine that recognizes
Bz, I'll add a new stategy, to take the place of the start state and handle the odd/even anomaly described
above. Here’s my NFA that recognizés :

Q = {alo<i<k)
Ai(gi,c) = Ax(g;c) fo<i<k
= {d(q0,€)} U As(qo,C)
F. = FU{qk“quEF}

We defineA% andé in the usual way. A property af&% that we will use is that there are no transitions
into stategy. In other words, for all statege Q%, and all symbolg € ¥, A%(q, ¢) C @p. Likewise, for

any stringw € ¥, A%(q,w) C Qs.



We will also make use of the following property lodlf:

b < half(y)] < kfU

The proof is by induction on the length gf

case|y| = 0: This meang = e. Thereforehalf(y) = ¢, and|half(y)| = 0 = % which satisfies the
claim.

casely| = 1: This meang, = c, for somec € X. Thereforehalf(y) = c, and|half(y)| = 1 = ‘y|2+1
which satisfies the claim.

casely| > 1: Chooser, ¢, andd such thaty = « - cd. From the definition ohalf, half(y) = half(z) - c

We have
1. half(y) = half(x-cd), = half(z)-c, choices ofr,c, andd; and def. half
2. '%‘ < |half(z)] < ‘””'T“, induction hypothesis
3. B2 < half(z) +1] < B2E add 1 to everything
4 O o haifr) o) < €A gef fu
5 W< half(y)] < BEL y = z - cd, half(y) = half(z) - ¢

) = B2 which will prove thatB2

1
2

Becausel/, is an NFA,L(M} ) is regular, Now, I'll prove that (M
is regular.

The proof, of course, is by induction on the lengthwofWe need an induction hypothesis. In particular,
we need to keep track of wheM1 goes as it reads a string. Thus, our induction hypothesis describes a
relationship between statesM1 and states oM.

Induction Hypothesis:
(@ €BAy(gn2)V(z=e & Ty (z=nhalf(y)) A (3(q0,y) =)V (z=e)

In English, the induction hypothesis says thaMf% can reachy by readingz, then there is somg
with = half(y) such that\/ reaches;’ when reading,. The disjuncts foz = ¢) allow the first
step to be special.

Caser = ¢
This case is easily shown because- ¢ ensures that both sides of the claimed equivalence are true.

Case|z| = 1:
Becauser # ¢, we can simplify the claim to

¢ €Ay(g2) & 3y (x=half(y)) A (6(q0,y) = ¢)

We will use start with this simplified version here and in the case for the induction step below. Because
|z| = 1, = consists of a single symbol. We'll writeto denote this symbol. From the definitions of
A% andA%, we obtain

¢ €Ay(ar2) & (¢ =06(q,¢) V(' €As(q0))

We prove the=- and< directions separately.

=
We need to prove:

((¢' =6(a0,0) V (¢ € Ay(a0,0))) = (. (x = half(y)) A (S(a0,9) = ¢))

We consider the’ = (g, C) andq € A% (go, C) cases separately.



q" = d(qo,C):
Lety = c. From the definition ohalf, half(y) = ¢ = 2. Furthermorej(y) = 6(qo,¢) = ¢'.
Thus, R
¢ =6(q0,¢) = Ty (v =half(y)) A (6(q0,y) = ¢)
q’ S A%((]O,C):
Expanding the definition ofA 1, we obtain3d. ¢’ = 4(d(qo, €),d). Choosed such thay’ =
§(6(qo,c),d), and lety = cd. From the definition ohalf, half(y) = ¢ = z. Furthermore,

o(y) = 6(d(qo, ), d) =¢".
¢ €Ay(q0,6) = 3y (z=half(y)) A (5(g0,9) = )

Combining these, we concludés’ = 6(qo,¢)) V (¢' € A1(qo,€))) = (Fy. (z = half(y)) A

(6(qo,y) = ¢)) as required.
<~
We need to prove:

(¢ =6(20.€) V(¢ € Ay (q0.,€)) <+ (B (z = half(y)) A (5(a0.v) = 7))
Lety be a string such thdt: = half(y)) A (8(qo, y) = ¢'). By the case assumption,= c. Thus,
half(y) = c. From the definition ohalf, we get that eithey = c or there is some symbdlsuch
thaty = cd. We consider these two cases separately.
y=_¢C:
From the definition ohalf, we conclude: = c. We also havey’ = §(¢o,y) = 6(qo, €), which
establishes the claim.
y = cd:
From the definition ohalf, we concluder = c. We also havey’ = 6(qo,y) = 6(qo,cd) =
8(0(qo, ), d), which establishesd. ¢’ = §(0(qo,C),d). Thereforeq’ € As(qo,c) and thus
q¢' € Ay(qo,c) as required.

We have now established(¢’ = d(qo0,¢)) V (¢' € A1(q,c))) <« (Jy. (z = half(y)) A

(0(q0,y) = ¢')) as required.
Having shown the=- and<= proves,

¢ €Ay(ar2) & (¢ =0(q,¢) V(' €As(q,0))

and completed the:| = 1 case.
Case|z| > 1:
Letx = wc wherew € ¥* andc € 3. Because: # ¢, we again simplify the claim to:

¢ €Ay(g,2) & 3y (= half(y)) A (S(a0,y) = ¢)

¢ € Ay (q,)

1. & (e A% (qo,w - C), choice ofw andc

2. & ¢ euUg e A%(qo,w)A%(qj,C), def.A%

3. & g (g5 € Aslgo,w)) A (d € Ay(g;,C)), set theory

4. & 3¢, €Qp (¢ € Ar(q,w) A(d € A (g5.)), property ofA;, As
5. « dg; € @p- . (w = half(v)) A (g; = 6(q0,v)) A (¢ € As(g;,€)), induction hypothesis
6. < g € Qp. Fv. (w=half(v)) A (g = 6(go,v)) A3d. ¢ = 5(6(gj,¢),d) induction hypothesis

We complete the proof by proving the and< cases separately.



= We need to show
¢ €As(gr) = Ty (@=halfy) A O(g0,y) =)

(g, ). Chooseg;, v, andd such thatw = half(v), ¢; = d(qo,v), and

Assumeq S A%
d). As shown in step 3, suaj3, v, andd are guaranteed to exist. Lgt= v - cd.

:6( (%7 )’
We have: R
9(q0,9)
7. 0(qo,v - cd), choice ofy
8. = 6(6(5(qo,v),c),d), def.d
9. = 4(d(¢gs,C),d), step 3:0(qo, v) = g;
10. = ¢, choice ofq’
Furthermore,
half(y)
11. = half(v-cd), choice ofy
12. = half(v)-c, def. half
13. = w-c, step 3:half(v) =
14. = z,choice ofwandc: z =w-c
This establishes
¢ €Ay(qew) = 3y (x=half(y)) A (S(q0,y) = ¢)
as required.
< We need to show
¢ €As(g,w) < 3y (v =half(y)) A (5(a0,y) = ¢)

Assumedy. (z = half(y)) A (8(go,y) = ¢). Choosey such thatz = half(y)) (8(q0,y) = ¢').
Becausez| > 1, |y| > 2. Choose, ¢, andd such thaty = v - cd. Letq; = (qo,v). We have:

15. half(v - cd)

= hal () c, def. half
16. half( ) =

y=v-cdhalf(v) =w,z =w-c
17. %(qk, v) induction hypothesis
18. = 6(6(gj,c),d) def.5, ¢ = 6(qo,v - cd)
19. A%( ,C)) dEf.A%
20. A%(qk, z)) def.A,, z = half(v - cd)

This establishes the- case.

Having proven the= and< cases, we've completed to proof far] > 1. Having completed proofs
for |x| =0, |z| = 1, and|z| > 1, we've handled all possible strings which completes the proof of

(@ €dj(ga)Vie=0 & Iy (x=halfy) Gy =q)V(=e

We now use this to show thate L(M%) &z e B,
caser € L(M%): This means thaﬁ%(qk,m) NFEyL # (. If z = ¢, theng is accepting, which
means thaty is accepting, and thereforee B ande € Bz. Otherwise, lety’ be a state in
A%(Qkax) NFy. Becauser € X1, ¢’ € Qg which means thaf’ € F (becauseF% NQp=F).
From our induction resulty. (x = half(y)) A (0(go0,y) = ¢'). Lety tl)e a string such that
(x = half(y)) A (0(q0,y) = ¢’). Because/ € F,y € B. Thereforex € Bz as required.



casex € Bz: If z = ¢, thengp is an accepting state df/z and ¢, is an accepting state of
M. This means that € L(M}) as required. Otherwise, lgtbe a string such thatr =

half(y)) A (3(q0,y) € F). Such ay exists because € Bz. Letq' = 3(qo,y). From our
induction resultg’ € A%(qk,x), andq’ € Fy because’ € F andF C Fi. Thus,xz € L(M%).



4. (20 points) The textbook for CpSc 121 (Rosebiscrete Mathematics and Its Applicatiorﬁéh edition, p. 12),
suggests searching the web for universities in Mexico by looking for pages that contain the word “MEXICO”
but not the word “NEW?” (to exclude pages about universities in New Mexico). He writes his search as

(MEXICO AND UNIVERSITY) AND NOTNEW

Searches are assumed to be case-insensitive.

(&) ( 5 points) What is wrong with Rosen’s proposed search criterion? Give an example of text that could
appear on a web page for which this search would do something different than its informal description.

(b) (10 points) Now, write a regular expression that much better matches the informal specification. In partic-
ular, it shouldn’t have the problem that you identified for Rosen’s query in part (a).

(c) ( 5 points) Presumably, you haven't solved the natural language understanding problem, so your expres-
sion will also fail to meet the informal specification for some web pages. Describe a web page for which
your regular expression does the “wrong” thing.

(d) ( 2 points, extra credit) Write a program in a language for which there is a compiler on the CS department
undergraduate machines that solves the natural language understanding problem. This program should be
able to take as input books, journal articles, and other English text and answer questions posed in natural
English about their contents.

Solution:
(a) What's wrong with Rosen'’s query?
Rosen’s criterion rejects any web page that includes the word “NEW”. For example:
“Jalisco was originally part of New Galicia before it became part of greater Mexico in
1821....So important to the area is tequila, that the local university offers a course in tequila
engineering.”
From: http://www.ianchadwick.com/tequila/country.html
(b) Write a regular expression to get a better query.
My solution is the expressiom defined below:

a = @ay@ay +ay@an)@

ap = O[NNEWa*WSMEX|CO
ay = UNIVERSITY
aNEW = Qow +aupW 4 aonEW + (#N ~ aws)avEW
aww = #N~(W+aws)
awgp = #HN~E
a.y = #FN~N
aws = any white space characters

The @s at the beginning and end afallow the matches foMEXICO andUNIVERSITY to appear
anywhere in the document. Furthermasieappears the matches fSEXICO andUNIVERSITY to
appear in either order and to be separated by any amount of text in between.
The expression fotv. ygyw makes sure that the woMEXICO in the match is not immediately pre-
ceded by the wortNEW. | took some care to handle the white space between the word that precedes
MEXICO and the word that precedddEW. Since Rosen didn’t talk about white space, it's OK if a
solution doesn’t address this.

(c) Describe a page for which this expression does the “wrong” thing.
This sentence matches the regular expression that | gave, but it doesn’t pertain to a university in
Mexico. When | put the solutions on the course web, this will be an example of a page for which the
regular expression will generate a false positive.

(d) Extra credit: solve the natural language understanding problem.
Not attempted.

10



5. (20 points)Let M be a two-input-tape finite automaton as described in the September 14 lecture notes. Define

Ly(M) = {51 exy ‘ Vsg € Z'j”. weave(sy, s2) € L(M)}

We call a machine with this acceptance condition a universally quantified, two-input-tape, finite automaton.

(@) (10 points) Prove thdty (M) is regular.

(b) (10 points) In the September 14 notes, we showed that we could simplify the presentation of a state transi-
tion diagram for an existentially quantified, two-input-tape finite automaton by droppirtpytbemponent
of each label and omiting arcs to terminally non-accepting states. The equivalent simplifications for uni-
versally quantified, two-input-tape, finite automaton are droppingtheomponent of each label and
omittng arcs to terminally accepting states. If a state has no outgoing arc for some input symbol, it is
assumed that the machine transitions to a terminally accepting state.
The automaton corresponding to the simplified state-transition diagram is caltemlisomaton (pro-
nounced “for all automaton”). This is a generally accepted technical term (whereas | made up the names
“existentially-" and “universally-quantified, two-input-tape, finite automata” just so we could talk about
them).

Draw the state transition diagram folveautomaton that accepts a string {a, b}* iff:

every ‘a’ is followed immediately by aby’;
and the number of&’ symbols in the input is even;
and the number ofb’ symbols in the input is a multiple of three.

Solution:

(@)

(b)

Prove that Ly (M) is regular.
| will first show that~ Ly (M) is regular.

~Ly(M) = <451 €3} | ~Vsy € Z'j”. weave(sy, s2) € L(M)}
= s e |35, € 2k weave(sy, s5) e~ L(M)}

AssumeM = (Q, X4, 35,9, qo, F) and defineM’ = (Q, X1, X2, d, g0, ~ F). We now have
~ Ly(M) = Ls(M’)

In the Sept. 14 notes, we showed tliat{ M’) is simply the language of an NFA, thus, it is regular.
Therefore~ Ly (M) is regular. Because the regular languages are closed under complément,

is regular as well.

Draw the state transition diagram. ..

See figure 2. Note that the non-determinism in this machine is the “forall” form described above,
not the “exists” form that we typically use in class. This machine has three start states. If a string
w is not in the language, then at least one of the three component machines must reject'it. The
non-determinism selects a component machine that will rejeatd the machine runs from there. On

the other hand, ifv is in the language, then it will be accepted no matter what component machine is
chosen.

To keep the duality with existentially quantified machines, states that have no successors for some
input symbol transition to a permanently accepting state (as described above). Thus, | had to include
a “garbage” state for the machine that checks that ex&ng followed immediately by ab’.

11



Every 'a isfollowe
immediately by a’b

The number of 'a's
iseven.

The number of 'b’s
isamultiple of 3.

Figure 2: AvV-automaton for problem 5b

Shorter Proofs

The proofs for problems 1 and 3 were rather long. That is in part because | included many explanatory comments and
showed lots of details. | assume that this will help some students who want to study the proofs. On the other hand,
this could be intimidating if you get the idea that you need to write multiple page proofs for your homework solutions.
This isn't necessary. | will give a “short” proof for each of these two problems. In each case, I'll take a different
approach to solving the problem as well, just to give you more examples of how to use the concepts that we've covered
in the class so far.

1. Prove that regular languages are closed under reversal.
Let B be a regular language. Because it is regular, there is a regular exprestianrecognizes it. We define
rev(a) as shown below:

rev(d) = 0
rev(e) = €
revic) = ¢
rev(a; + ag) = rev(ag) +rev(as)
reviar - az) = rev(asg)-reviag)

(

(a2
rev(a*) = rev(a)

(@)

a=0:
In this case, botl.(«) andL(rev(«)) are the empty language and the claim holds.
o = €.
In this case, botlL(«) and L(rev(«)) contain only the empty string. The empty string is its own reverse;
so, the claim holds.
a=C:
In this case, bottl(«) and L(rev(a)) contain only the string consisting of a single symbolThe string
c is its own reverse; so, the claim holds.
a = 1 + Qo
Considerw € L(«). Then eitherw € L(ay) orw € L(az). In the first case, them™ € L(rev(a;));
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thereforeqw™ € L(rev(a). An analogous argument shows thatife L(az) thenw™ € L(rev(as)) C
L(rev(a)).
Now considerw™ € L(rev(a)). Then eitherw™ € L(rev(ay)) or w € L(rev(as)), and arguments
analogous to those above show that L(«) as required.

a = Q1 Q!
My proof uses the fact that”® - 2* = (zy)”. I'll prove that by induction first (i.e. a lemma), and then get
on with the main proof. The proof is by induction gn

Induction hypothesisy® - 2™ = (zy)~.
Base casey = e.

yR-aR = e 2R = 2% = (2e)® = (ay)®
Induction stepy = zc.
(zy)®

= (2z0)®, y=2zc

= c(z2)®, def.rev

= cz®z®,  induction hypothesis

= (zc)R2%, def.rev

= y®a®,  y=zc

U

Now, we do the main proof for this case.df € L(«) then there are strings andy such thatv = zy,
x € L(ay) andy € L(az). By the induction hypothesis;® € L(rev(a;)) andy™ € L(rev(as)). Thus,
yRa® € L(rev(a)) becauseev(a) = rev(az) - rev(ay).
The proof that ifw™ € L(rev(a)) thenw € L(«) is equivalent to the one above.
a=oj:

If w € L(a}), then there exists such thatw € L(af); likewise if w™ € L(rev(a;)*). This leads to a
proof by induction ork:

Induction hypothesisw € L(a}) & w® € L(rev(a;)*).

Base casek = 0.

weLa)) & welle) & w=e & wl=c¢ & wlelLlrev(a)?) < wke L(rev(ap)*)

Induction step% > 0.

w € L(ak)
& we L o), def.a}, k>0
&  w® e L(rev(ap)rev(a;)*~1), induction (ona;) hypothesis
& wR e L(rev(ap)b), def.a¥ k>0
& wR e L(rev(ap)*), def. asteration
& w® e L(rev(a)), rev(aj) = rev(a;)*
O
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3. Prove that if B is regular, then so ishalf (B).
First, I'll take this occasion to fix thhalf function. Let

half(e) = e
half(c) = -c, cex
half(z - cico) = half(z)ce, ci,c0 €3, z € X*

and I'll assume thahalf is defined using this version bflf. abcdefg

In the September 26 lecture, we saw that the regular languages are closed under homomorphisms and inverse
homomorphisms (see Kozen lecture 10). IBbe a language ovex, and letp be a symbol not ir. Let

Y5 = (XUp) x X. The purpose fop is to provide a padding for the first symbol of a stringif if we're trying

to match it with an odd-length string Id. Let H; : 33 — X* be the homomorphism

Hy((cy1,C2)) CiCy, ifci#p

= Caq, if c; = P

Because the regular languages are closed under inverse homomorfhisii) is a regular language. This
isn’'t quite what | want because it can hgwesymbols anywhere. | want to only allowwsymbols in the first
symbol of the string. There is a regular language that only recognizes stririg$ tinat either have ne
components, or that only have a singl@s the first component of the first symbol. Lt be this language.
The regular languages are closed under intersection. Theréi‘pﬁe,Hfl(B) N B, is regular.

Now, | want to discard every other symbol in the original string. This corresponds to discarding the first com-
ponent of each symbol in a string ove}. Let

Hy((c1,¢2)) = Co
Let B, = Hy(B1). Because the regular languages are closed under homomorghissregular.
| claim thatB, = Bz. To prove this, | will show

{w3z € B,. (Hi(2) =) A (w = Ha(2)} & {half(y)}
The proof is by induction on the length gf

ly| =0
This meang) = €. The onlyz € B, with H,(z) = y ise. Thus, ifz € {w|...}, thenz = e = half(y).
lyl =1

This means thaj consists of a single symbol frol. Lety = c. The onlyz € B, with H,(z) = y is
(p,c). Thus, ifz € {w]|...}, thenz = ¢ = half(y).

ly| > 1
Lety = v - c1C2. By the induction hypothesis, there is some B, such thatH; (u) = v and for every
suchu, Ha(u) = half(v). Letu be some such string iB,. Let, z = u - (C1,C2). From the definition of
H,, H1(z) =y, and we concludeHy(z) = Ha(u) - €2 = half(v) - co = half(y).
Now let z be any string i3 such thatH;(z) = y. Becausey # ¢, z # €. Letz = u - (dy, d3). Because
ly| > 1, d; # p (a simple argument by contradiction:df = p, thenu = ¢ which meang; = d» and
ly| = 1). By the choice ok, y = H1(z) = Hi(u) - d1ds. ThusH;(u) = v, d; = ¢, anddy = c. By the
induction hypothesisif,(u) = half(v). Thus,

HQ(Z) = HQ(U . C1C2) = HQ(’LL) - Co = half(v) - Co = half(v . C1C2) = half(y)
O

We have shown thaB, = {z|3y € B. = = half(y)}. In other words B, = Bz. The languagé3; is regular by
its construction. ThusBz is regular.
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