Introduction to Theory of Computing

CpSc 421

Daily Question

(due October 28, 2005)

Consider the grammar below for a simple fragment of C:

S	\rightarrow	statement-list
statement-list	\rightarrow	statement
		statement-list statement
statement	\rightarrow	assignment
		<i>if-statement</i>
		compound-statement
assignment	\rightarrow	id = expr;
if-statement	\rightarrow	if (cond) statement
		if (cond) statement else statement
compound-statement	\rightarrow	{ statement-list }
expr	\rightarrow	id + id
cond	\rightarrow	$\mathbf{id} < \mathbf{id}$

I used **bold** font for terminals, and *italics* for non-terminals. The terminal **id** matches any C identifier (e.g. **a**, **b**, **c**, and **foo**). The other non-terminals are exactly the corresponding strings, (e.g. **if** matches the string 'i' 'f', and so on). Show that this grammar is ambiguous. In particular, give two parsings for the program:

 $\begin{array}{l} \text{if}(a < b) \\ \text{if}(b < c) \text{ foo } = a + b; \\ \text{else foo } = b + c; \end{array}$