solution for Oct. 17 Daily Question

Construct a PDA that recognizes the language over $\{\mathrm{a}, \mathrm{b}\}^{*}$
$\left\{w \mid \exists x . x x^{R}=w\right\}$
where x^{R} denotes the reverse of x, as usual.

Let the PDA $\mathrm{P}=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}, \perp, \mathrm{F})$, where

- $Q=\{q, r\}$, the set of states of the NFA
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, the alphabet of the NFA
- $\Gamma=\{a, b, \perp\}$, the alphabet of the stack
- $q=$ the initial state of the NFA
- $\perp=$ the empty-stack symbol
- F - the PDA accepts on an empty stack
- $\delta=\{(\mathrm{q}, \varepsilon, \perp, \mathrm{r}, \varepsilon)$,
($\mathrm{q}, \mathrm{a}, \perp, \mathrm{q}, \mathrm{a} \perp$),
($\mathrm{q}, \mathrm{b}, \perp, \mathrm{q}, \mathrm{b} \perp$),
($q, a, a, q, a a$),
($\mathrm{q}, \mathrm{a}, \mathrm{a}, \mathrm{r}, \mathrm{\varepsilon}$),
($\mathrm{q}, \mathrm{b}, \mathrm{a}, \mathrm{q}, \mathrm{ba}$),
($\mathrm{q}, \mathrm{b}, \mathrm{b}, \mathrm{q}, \mathrm{bb}$),
(q, b, b, r, ε),
($q, a, b, q, a b$),
($\mathrm{r}, \mathrm{a}, \mathrm{a}, \mathrm{r}, \varepsilon$),
($\mathrm{r}, \mathrm{b}, \mathrm{b}, \mathrm{r}, \mathrm{\varepsilon}$),
$(\mathrm{r}, \varepsilon, \perp, \mathrm{r}, \varepsilon)\}$

The machine works in such a way that it adds symbols in the first half of the string to the stack, while remaining in state q to represent the fact that it is looking at the first half. It makes a nondeterministic guess as to when it has reached the halfway point of the string, at which point it transitions to state r , and from then on it cannot push new symbols onto the stack, only pop symbols as it matches them to those in the second half.

