Introduction to Theory of Computing

CpSc 421

Daily Questions

(due September 21, 2005) Here is a pattern that matches Java floating point constants:

α	=	0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9	, any digit
p	=		, the character for a period
σ	=	++-+ ϵ	, plus or minus characters (or nothing)
μ	=	$\alpha^*(\boldsymbol{\epsilon} + p)\alpha^* \cap (\boldsymbol{@}\alpha\boldsymbol{@})$, the mantissa
λ	=	$e\sigma \alpha^+$, the exponent
γ	=	$(\mu(\boldsymbol{\epsilon}+\lambda))\cap(\boldsymbol{@}(p+\mathbf{e})\boldsymbol{@})$, a Java floating point constant

Translate the pattern γ into the state transition diagram for a NFA. You may label arcs with α and/or μ for brevity. What is the reason for including $\cap(@\alpha@)$ in the expression for μ ?