Daily Questions

(due September 21, 2005) Here is a pattern that matches Java floating point constants:

```
\(\alpha=0+1+2+3+4+5+6+7+8+9\), any digit
\(p=\). , the character for a period
\(\sigma=++-+\boldsymbol{\epsilon} \quad\), plus or minus characters (or nothing)
\(\mu=\alpha^{*}(\boldsymbol{\epsilon}+p) \alpha^{*} \cap(@ \alpha @)\), the mantissa
\(\lambda=\mathrm{e} \sigma \alpha^{+} \quad\),the exponent
\(\gamma=(\mu(\boldsymbol{\epsilon}+\lambda)) \cap(@(p+e) @) \quad, a\) Java floating point constant
```

Translate the pattern γ into the state transition diagram for a NFA. You may label arcs with α and/or μ for brevity. What is the reason for including $\cap(@ \alpha @)$ in the expression for μ ?

