March 22 Wednesday

Euclidean TSP is NP-Hard [Papadimitriou '77]

Hamiltonian Cycle: Given unweighted graph G, does G contain a cycle that visits every vertex once? Hamiltonian Cycle is NP-hard.

Hardness of Approximation
The general TSP is NP-Hard to approximate.

Claim: If P ≠ NP then there is no polytime c-approximation algorithm for TSP.

Proof: Suppose A is a polytime c-approximation algorithm for TSP.

Transform X:
Create G' from G = (V,E), |V| = n
G' has all edges

\[w(u,v) = \begin{cases} 1 & \text{if } (u,v) \in G \\ c|V| + 1 & \text{if } (u,v) \notin G \end{cases} \]

Transform Y: If \(|TSPA(G')| \leq c|V|\) then output yes, otherwise no.

Why does this work?
Edges not in the original graph are so costly that there's a gap between cost of tour if G contains a Hamiltonian cycle (cost=n) and cost of tour if G doesn't
March 22 Wednesday

Euclidean TSP is NP-Hard [Papadimitriou '77]

Hamiltonian Cycle: Given unweighted graph G, does G contain a cycle that visits every vertex once?

Hamiltonian Cycle is NP-hard.

Hardness of Approximation

The general TSP is NP-Hard to approximate.

Claim: If P ≠ NP then there is no polytime c-approximation algorithm for TSP.

Proof: Suppose A is a polytime c-approximation algorithm for TSP.

Transform X:
Create G′ from G = (V,E), |V|=n
G′ has all edges 𝒏(𝒖,𝒗) = \$1 if (𝒖,𝒗) ∈ 𝑮
𝒄|𝑽| + 1 if (𝒖,𝒗) ∉ 𝑮

Transform Y:
If |𝑻𝑺𝑷𝑨(𝑮′)| ≤ 𝒄|𝑽| then output yes, otherwise no.

Why does this work?

Edges not in the original graph are so costly that there's a gap between cost of tour if G contains a Hamiltonian cycle (cost=n) and cost of tour if G doesn't (cost > c|V|)

March 24 Friday

Online Algorithm

For input sequence P1P2...Pn in which n is very large, an online algorithm must produce an output given a partial input P1P2...Pi (without seeing Pi+1...Pn) for each i.

Example: Page replacement in cache
P1P2....Pn is a sequence of page requests made by a program.
K is the size of cache.
At ith page request, Pi, the cache contains some k pages.
If Pi is not in the cache (page fault), some page must be evicted from cache to make room for Pi, then Pi is added to cache.

The cost of a page replacement algorithm A on a sequence P1P2...Pn is

\[f_A(P1P2...Pn) = \#\text{faults on } P1P2...Pn \]

Online algorithm must decide what page to evict without knowing the future request.

Example Page replacement algorithm:

Least Recently Used (LRU): Evict page whose most recent request occurred furthest in the past.

Least Frequently Used (LFU): Evict page that has been requested least often.

Marking Algorithm: poor man's LRU (with randomization)

FIFO: Evict page that has been in cache longest.

How do we decide the best online algorithm?

1. Worst-case performance

\[
\max_{P1P2...Pn} \begin{cases} f_{LRU}(P1P2...Pn) = n \\ f_{LFU}(P1P2...Pn) = n \\ f_{FIFO}(P1P2...Pn) = n \end{cases}
\]
2. Average-case performance:
 \((m=total \# \ of \ pages \ possibly \ requested)\)
 Expected \# page fault on sequence of randomly, uniformly, independently
 chosen pages:
 \[E[f_{\text{LRU}}(P_1 P_2 \ldots P_n)] = (1 - k/m) * n\]
 \[E[f_{\text{LFU}}(P_1 P_2 \ldots P_n)] = (1 - k/m) * n\]
 \[E[f_{\text{FIFO}}(P_1 P_2 \ldots P_n)] = (1 - k/m) * n\]

3. Competitive Analysis

 How does online algorithm's performance compare to best offline algorithm?
 An online algorithm \(A\) is \(c\)-competitive if
 there exists \(b\) such as
 for all \(P_1 P_2 \ldots P_n\)
 \(f_A(P_1 P_2 \ldots P_n) \leq c * f_{\text{OPT}}(P_1 P_2 \ldots P_n) + b\)

 \textbf{Thm:} LRU & FIFO are \(k\)-competitive in which \(k = cache\) size.
 \textbf{Thm:} If \(A\) is a deterministic online algorithm for paging, then \(c \geq k\).