Euclidean TSP is NP-hard [Papadimitriou ’77]

Hamiltonian Cycle: Given an unweighted graph G

Does G contain a cycle that visits every vertex once?

Hardness of Approximation

The general TSP is NP-hard to approximate

Claim:

If P ≠ NP

then there is no polynomial time c-approximation algorithm for TSP.

Transform X: Create G’ from G=(V,E) |V|=n where G’ has all edges.

\[w(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ c|V| + 1 & \text{if } (u,v) \notin E \end{cases} \]

Transform Y: if | TSP(G’) | ≤ c|V|

then output yes,

else no

Why does this work?

Edges not in the original graph are so costly that there is a gap between the cost of a tour if G contains a Ham cycle (cost=n) and cost of tour if G doesn’t (cost ≤ c|V|).

Online Algorithms

For input sequence p_1, p_2, ..., p_n (very large) an online algorithm must produce an output given p_1, p_2, ..., p_n (without seeing p_1, p_2, ..., p_n) for each i

ex.

Page replacement in cache
\(p_1, p_2, ..., p_n \) is a sequence of page requests made by a program

\(k \) is cache size (number of pages)

At \(i^{th} \) request, \(p_i \), the cache contains some \(k \) pages If \(p_i \) is not in cache (page fault) some page must be evicted from cache to make room for \(p_i \), then \(p_i \) is added to cache.

The cost of a page replacement algorithm \(A \) on a sequence \(p_1, p_2, ..., p_n \) is \(f_A(p_1, p_2, ..., p_n) = \) number of faults on \(p_1, p_2, ..., p_n \)

Online algorithm must decide what page to evict without knowing future requests.

ex.

Page Replacement Algorithms:

Least Recently Used (LRU) - evict each page whose most recent request occurred furthest in the past

Least Frequently Used (LFU) - evict page that has been requested least often

Marking Algorithms - poor man’s LRU with randomization

First In First Out (FIFO) - evict page that has been in cache longest

How do we decide best online algorithm?

1) Worst-case performance

\[
\max(p_1, p_2, ..., p_n) = \begin{cases}
 f_{LRU}(p_1, p_2, ..., p_n) = n \\
 f_{LFU}(p_1, p_2, ..., p_n) = n \\
 f_{FIFO}(p_1, p_2, ..., p_n) = n
\end{cases}
\]

2) Average case performance \(m = \) total number of pages possibly requested

Expected number of page faults on a sequence of randomly, uniformly, independently chosen pages:
\[
E[f_{LRU}(p_1, p_2, ..., p_n)] = (1 - K/M) * N \\
E[f_{LFU}(p_1, p_2, ..., p_n)] = (1 - K/M) * N \\
E[f_{FIFO}(p_1, p_2, ..., p_n)] = (1 - K/M) * N
\]

3) Competitive Analysis

How does the online algorithm’s performance compare to that of the best offline algorithm?

An online algorithm \(A \) is \(c \)-competitive

if there exists \(b \)

for all \(p_1, p_2, ..., p_n \)

\[
f_A(p_1, p_2, ..., p_n) \leq c * f_{OPT}(p_1, p_2, ..., p_n) + b, \ f_{OPT} \text{ knows future}
\]
Thm LRU and FIFO are k-competitive

Thm If A is deterministic online algorithm for paging then $c \geq k$