In this lecture, we discussed approximation algorithms for:

- Minimum Vertex Cover
- List Scheduling Approximation

Suggested Reading: http://jeffe.cs.illinois.edu/teaching/algorithms/notes/31-approx.pdf

1 Minimum Vertex Cover

Definition. Minimum vertex cover: given an undirected graph $G = (V, E)$, find the smallest set of vertices $S \subseteq V$ such that all edges in G have at least one endpoint in S.

Greedy Algorithm for Minimum Vertex Cover [GreedyVC]:

1. Include in S the vertex with the highest degree (largest number of connected edges)
2. Remove the vertex and all incident edges from G
3. Repeat Steps 1-2 until no edges are left in G

Guarantee: the size of GreedyVC $\leq \log n \cdot \text{OPTVC}$ for all graphs

Matching Vertex Cover [MVC]:

1. Set $S = \emptyset$
2. Pick any edge in the graph: $(u, v) \in G$

 a. Remove (u, v) from G and all edges that are adjacent to u or v

 b. Add u, v to S
3. Repeat 2 until no edges are left in G

Claim: MVC is a 2-approximation for minimum vertex cover

- We don’t know how big $\text{OPTVC}(G)$ is but we can get the lower bound for its size

Proof:

1. $|\text{OPTVC}(G)| \geq \#edges$ picked by MVC because the edges form the matching; no vertex covers more than one edge in a matching
2. $\#$ vertices picked by MVC is $2 \times \#edges$ picked $\rightarrow |MVC(G)| \leq 2|\text{OPTVC}(G)|$
2 List Scheduling Approximation
(1966 – Ronald Graham of Graham’s Scan)

Definition. List Scheduling:
- Given \(n \) jobs, job \(i \) must execute uninterruptibly for \(P_i \) time units.
- Given \(m \) identical machines, each machine can work on one job at a time
- Find a schedule of jobs that minimizes the overall completion time

Example:
\(P : 5, 7, 17, 10, 9, 30 \): 6 jobs among 3 machines

Greedy Algorithm: Whenever a machine becomes idle, assign the next job to it.

Optimal Algorithm: The best possible job allocation

Another possible variant (not depicted): sort the jobs first from smallest to largest, then add to machines in reverse size order.
Greedy Algorithm (G):
Whenever a machine becomes idle, assign the next job to it.

Claim: \(G(P_1, P_2, \ldots, P_n) \leq \left(2 - \frac{1}{m}\right)OPT(P_1, P_2, \ldots, P_n) \) (A little better than 2-approximation)

Proof:
1. \(OPT \geq P_i \) for all \(i \)
2. \(OPT \geq \frac{1}{m} \sum P_i \)
 - Note: \(\frac{1}{m} \sum P_i \) is the perfect division of \(P_i \) among machines, assuming jobs are interruptible

Let job \(k \) be the last job to finish. \(P_k \leq OPT \) by (1)

Goal: show that the sum of jobs before \(P_k \) on that machine is smaller than \(OPT \), then the sum of the \(P_i \)'s for all jobs on that machine is no more than \(\left(2 - \frac{1}{m}\right)OPT \)
 1. Let \(S_k \) be the sum of the \(P_i \)'s for all jobs on that machine before \(P_k \).
 2. Up to time \(S_k \) (when work starts on job \(k \)), all machines have been busy. That means the total amount of work that has been done up to time \(S_k \) is \(mS_k \). This work is on jobs other than job \(k \). So \(\sum_{i \neq k} P_i \geq mS_k \) or, after rearranging, \(S_k \leq \frac{1}{m} \sum_{i \neq k} P_i \)
 3. Combining (1) and (2):
\[
S_k + P_k \leq \frac{1}{m} \sum_{i \neq k} P_i + P_k = \frac{1}{m} \sum P_i + \left(1 - \frac{1}{m}\right)P_k \\
\leq OPT + \left(1 - \frac{1}{m}\right)OPT = \left(2 - \frac{1}{m}\right)OPT
\]
\(\therefore \)