

MPI

Message Passing Programming

 Model
 Set of processes that each have local data and

are able to communicate with each other by
sending and receiving messages

 Advantages
 Useful and complete model to express parallel

algorithms
 Potentially fast
 What is used in practice

What is MPI ?

 A coherent effort to produce a standard
for message passing
 Before MPI, proprietary (Cray shmem, IBM

MPL), and research community (PVM, p4)
libraries

 A message-passing library specification
 For Fortran, C, and C++

MPI History

 MPI forum: government, academia, and
industry
 November 1992 committee formed
 May 1994 MPI 1.0 published
 June 1995 MPI 1.1 published (clarifications)
 April 1995 MPI 2.0 committee formed
 July 1997 MPI 2.0 published
 July 1997 MPI 1.2 published (clarifications)
 November 2007, work on MPI 3 started

Current Status

 MPI 1.2
 MPICH from ANL/MSU
 LAM from Indiana University (Bloomington)
 IBM, Cray, HP, SGI, NEC, Fujitsu

 MPI 2.0
 Fujitsu (all), IBM, Cray, NEC (most), MPICH,

LAM, HP (some)

Parallel Programming With MPI

 Communication
 Basic send/receive (blocking)
 Collective
 Non-blocking
 One-sided (MPI 2)

 Synchronization
 Implicit in point-to-point communication
 Global synchronization via collective

communication
 Parallel I/O (MPI 2)

Creating Parallelism

 Single Program Multiple Data (SPMD)
 Each MPI process runs a copy of the same

program on different data
 Each copy runs at own rate and is not explicitly

synchronized
 May take different paths through the program

• Control through rank and number of tasks

Creating Parallelism

 Multiple Program Multiple Data
 Each MPI process can be a separate program

 With OpenMP, pthreads
 Each MPI process can be explicitly multi-

threaded, or threaded via some directive set
such as OpenMP

MPI is Simple

 Many parallel programs can be written
using just these six functions, only two of
which are non-trivial:
 MPI_Init
 MPI_Finalize
 MPI_Comm_size
 MPI_Comm_rank
 MPI_Send
 MPI_Recv

Gropp, Lusk

Simple Hello (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Gropp, Lusk

Notes on C, Fortran, C++

 In C:
 #include mpi.h
 MPI functions return error code or MPI_SUCCESS

 In Fortran
 include mpif.h
 use mpi (MPI 2)
 All MPI calls are subroutines, return code is final

argument
 In C++

 Size = MPI::COMM_WORLD.Get_size(); (MPI 2)

Timing MPI Programs

 MPI_WTIME returns a floating-point number of seconds,
representing elapsed wall-clock time since some time in the
past

double MPI_Wtime(void)
DOUBLE PRECISION MPI_WTIME()

 MPI_WTICK returns the resolution of MPI_WTIME in
seconds. It returns, as a double precision value, the number
of seconds between successive clock ticks.

double MPI_Wtick(void)
DOUBLE PRECISION MPI_WTICK()

What is message passing?
 Data transfer plus synchronization

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data
Data
Data
Data
Data
Data
Data

Time

Gropp, Lusk

MPI Basic Send/Receive
 We need to fill in the details in

 Things that need specifying:
 How will “data” be described?
 How will processes be identified?
 How will the receiver recognize/screen messages?
 What will it mean for these operations to

complete?
Gropp, Lusk

recv()

send()

Process 0 Process 1

Identifying Processes

 MPI Communicator
 Defines a group (set of ordered processes) and

a context (a virtual network)
 Rank

 Process number within the group
 MPI_ANY_SOURCE will receive from any process

 Default communicator
 MPI_COMM_WORLD the whole group

Identifying Messages

 An MPI Communicator defines a virtual
network, send/recv pairs must use the
same communicator

 send/recv routines have a tag (integer
variable) argument that can be used to
identify a message, or screen for a
particular message.
 MPI_ANY_TAG will receive a message with any

tag

Identifying Data

 Data is described by a triple (address,
type, count)
 For send, this defines the message
 For recv, this defines the size of the receive

buffer
 Amount of data received, source, and tag

available via status data structure
 Useful if using MPI_ANY_SOURCE,
MPI_ANY_TAG, or unsure of message size (must
be smaller than buffer)

MPI Types

 Type may be recursively defined as:
 An MPI predefined type
 A contiguous array of types
 An array of equally spaced blocks
 An array of arbitrary spaced blocks
 Arbitrary structure

 Each user-defined type constructed via an
MPI routine, e.g. MPI_TYPE_VECTOR

MPI Predefined Types

C: Fortran:
MPI_INT MPI_INTEGER

MPI_FLOAT MPI_REAL

MPI_DOUBLE
MPI_DOUBLE_PRECISION

MPI_CHAR MPI_CHARACTER

MPI_UNSIGNED MPI_LOGICAL

MPI_LONG MPI_COMPLEX

Language Independent:
MPI_BYTE

MPI Types

 Explicit data description is useful:
 Simplifies programming, e.g. send row/column

of a matrix with a single call
 Heterogeneous machines
 May improve performance

• Reduce memory-to-memory copies
• Allow use of scatter/gather hardware

 May hurt performance
• User packing of data likely faster

MPI Standard Send

MPI_SEND(start, count, datatype, dest, tag, comm)

 The message buffer is described by (start, count,
datatype).

 The target process is specified by dest, which is the
rank of the target process in the communicator
specified by comm.

 When this function returns (completes), the data has
been delivered to the system and the buffer can be
reused. The message may not have been received by
the target process. The semantics of this call is up to
the MPI middleware.

MPI Receive
MPI_RECV(start, count, datatype, source, tag, comm, status)

 Waits until a matching (both source and tag) message is received
from the system, and the buffer can be used

 source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

 tag is a tag to be matched on or MPI_ANY_TAG
 receiving fewer than count occurrences of datatype is OK, but

receiving more is an error
 status contains further information (e.g. size of message)

MPI Status Data Structure

 In C

MPI_Status status;

int recvd_tag, recvd_from, recvd_count;

// information from message

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, MPI_INT, &recvd_count);

Point-to-point Example

Process 0 Process 1

#define TAG 999
float a[10];
int dest=1;
MPI_Send(a, 10,
MPI_FLOAT, dest, TAG,
MPI_COMM_WORLD);

#define TAG 999
MPI_Status status;
int count;
float b[20];
int sender=0;
MPI_Recv(b, 20,
MPI_FLOAT, sender, TAG,
MPI_COMM_WORLD,
&status);
MPI_Get_count(&status,
MPI_FLOAT, &count);

Message Delivery

 Non-overtaking messages
 Message sent from the same process will arrive

in the order sent
 No fairness

 On a wildcard receive, possible to receive from
only one source despite other messages being
sent

 Progress
 For a pair of matched send and receives, at

least one will complete independent of other
messages.

Data Exchange

Process 0 Process 1

MPI_Recv(…,1,…)

MPI_Send(…,1,…)

MPI_Recv(…,0,…)

MPI_Send(…,0,…)

Deadlock. MPI_Recv will not return until send is posted.

Data Exchange

Process 0 Process 1

MPI_Send(…,1,…)

MPI_Recv(…,1,…)

MPI_Send(…,0,…)

MPI_Recv(…,0,…)

May deadlock, depending on the implementation. If the
messages can be buffered, program will run. Called 'unsafe'
in the MPI standard.

Message Delivery

 Eager: send data immediately; store in remote
buffer
 No synchronization
 Only one message sent
 Data is copied
 Uses memory for buffering (less for application)

 Rendezvous: send message header; wait for
recv to be posted; send data
 No data copy
 More memory for application
 More messages required
 Synchronization (send blocks until recv posted)

P0 P1

data

ack

req

ack

data

ack

Message Delivery

 Many MPI implementations use both the
eager and rendezvous methods of message
delivery

 Switch between the two methods according
to message size

 Often the cutover point is controllable via
an environment variable, e.g.
MP_EAGER_LIMIT and
MP_USE_FLOW_CONTROL on the IBM SP

Messages matched in order

dest=1
tag=1

dest=1
tag=4

dest=1
tag=1

dest=1
tag=2

src=*
tag=1

src=*
tag=1

src=2
tag=*

src=2
tag=*

src=*
tag=*

dest=1
tag=3

Process 0
(send)

Process 2
(send)

Process 1
(recv)

TIME

Message ordering

Send(A)
Send(B)

Recv(A)
Send(A)

iRecv(A)
iRecv(B)

Waitany()

Without the intermediate process they MUST
be received in order.

MPI point to point routines
 MPI_Send Standard send
 MPI_Recv Standard receive
 MPI_Bsend Buffered send
 MPI_Rsend Ready send
 MPI_Ssend Synchronous send
 MPI_Ibsend Nonblocking, buffered send
 MPI_Irecv Nonblocking receive
 MPI_Irsend Nonblocking, ready send
 MPI_Isend Nonblocking send
 MPI_Issend Nonblocking synchronous send
 MPI_Sendrecv Exchange
 MPI_Sendrecv_replace Exchange, same buffer
 MPI_Start Persistent communication

Communication Modes
 Standard

 Usual case (system decides)
 MPI_Send, MPI_Isend

 Synchronous
 The operation does not complete until a matching receive has

started copying data into its receive buffer. (no buffers)
 MPI_Ssend, MPI_Issend

 Ready
 Matching receive already posted. (0-copy)
 MPI_Rsend, MPI_Irsend

 Buffered
 Completes after being copied into user provided buffers

(Buffer_attach, Buffer_detach calls)
 MPI_Bsend, MPI_Ibsend

Point to point with modes

MPI_[SBR]send(start, count, datatype, dest, tag, comm)

There is only one mode for receive!

Buffering

Buffering

Usual type of scenario
 User level buffering in the application and

buffering in the middleware or system

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

System buffers
 System buffering depends on OS and NIC card

May provide varying amount of buffering depending on
system. MPI tries to be independent of buffering.

Process 0 Process 1
Application

Application

the network
NIC

NIC

OS

OS

Some machines by-pass the system

 Avoids the OS, no buffering except in network

This requires that MPI_Send wait on delivery, or that
MPI_Send return before transfer is complete, and we wait
later.

Process 0 Process 1

User data

User data

the network

Some machines by-pass the OS
 Avoids the OS, zero copy

 Zero copy may be either on the send and/or receive

Send side easy, but the receive side can only work if the
receive buffer is known

Process 0 Process 1
Application

Application

the network
NIC

NIC

OS

OS

MPI’s Non-blocking Operations

 Non-blocking operations return (immediately)
“request handles” that can be tested and waited
on. (Posts a send/receive)

 MPI_Request request;

MPI_Isend(start, count, datatype,
 dest, tag, comm, &request)

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request)

 MPI_Wait(&request, &status)

 One can also test without waiting:
 MPI_Test(request, &flag, status)

Example
#define MYTAG 123
 #define WORLD MPI_COMM_WORLD
 MPI_Request request;
 MPI_Status status;
Process 0:
 MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD,

&request)
 MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD)
 MPI_Wait(&request, &status)
Process 1:
 MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD,

&request)
 MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD)
 MPI_Wait(&request, &status)

Using Non-Blocking Send
Also possible to use non-blocking send:

 “status” argument to MPI_Wait doesn’t return useful info
here.

#define MYTAG 123
#define WORLD MPI_COMM_WORLD
MPI_Request request;
MPI_Status status;
p=1-me; /* calculates partner in exchange */

Process 0 and 1:

MPI_Isend(A, 100, MPI_DOUBLE, p, MYTAG, WORLD,
&request)

MPI_Recv(B, 100, MPI_DOUBLE, p, MYTAG, WORLD,
&status)

MPI_Wait(&request, &status)

Non-Blocking Gotchas
 Obvious caveats:

 1. You may not modify the buffer between Isend() and the
corresponding Wait(). Results are undefined.

 2. You may not look at or modify the buffer between Irecv() and
the corresponding Wait(). Results are undefined.

 3. You may not have two pending Irecv()s for the same buffer.
 Less obvious:

 4. You may not look at the buffer between Isend() and the
corresponding Wait().

 5. You may not have two pending Isend()s for the same buffer.
 Why the isend() restrictions?

 Restrictions give implementations more freedom, e.g.,
• Heterogeneous computer with differing byte orders
• Implementation swap bytes in the original buffer

Multiple Completions

 It is sometimes desirable to wait on multiple requests:
 MPI_Waitall(count, array_of_requests,

 array_of_statuses)

 MPI_Waitany(count, array_of_requests,
 &index, &status)

 MPI_Waitsome(count, array_of_requests,
 array_of indices, array_of_statuses)

 There are corresponding versions of test for each of
these.

Multiple completion

 Source of non-determinism (new issues
fairness?), process what is ready first

 Latency hiding, parallel slack

 Still need to poll for completion, {do some
work; check for comm}*

 Alternative: multiple threads or co-routine
like support

Buffered mode

Buffered Mode
 When MPI_Isend is awkward to use (e.g. lots of

small messages), the user can provide a buffer for
the system to store messages that cannot
immediately be sent.
 int bufsize;

char *buf = malloc(bufsize);
MPI_Buffer_attach(buf, bufsize);
...
MPI_Bsend(... same as MPI_Send ...)
...
MPI_Buffer_detach(&buf, &bufsize);

 MPI_Buffer_detach waits for completion.
 Performance depends on MPI implementation and

size of message.

Careful using buffers

 What is wrong with this code?

MPI_Buffer_attach(buf,bufsize+MPI_BSEND_OVERHEAD)

for (i=1,i<n, i++) {

 ...
 MPI_Bsend(bufsize bytes ...)
 ...
 Enough MPI_Recvs()
}
MPI_Buffer_detach(buff_addr, bufsize)

Buffering is limited

 Processor 0
i=1
MPI_Bsend
MPI_Recv
i=2
MPI_Bsend

 i=2 Bsend fails
because first Bsend
has not been able to
deliver the data

 Processor 1
i=1
MPI_Bsend
… delay due to
computing, process
scheduling,...
MPI_Recv

Correct Use of MPI_Bsend

 Fix: Attach and detach buffer in loop

 MPI_Buffer_attach(buf, bufsize+MPI_BSEND_OVERHEAD)
for (i=1,i<n, i++) {

 ...
 MPI_Bsend(bufsize bytes ...)
 ...
 Enough MPI_Recvs()
 MPI_Buffer_detach(buf_addr, bufsize)

 }

 Buffer detach will wait until messages have been
delivered

Ready send

 Receive side zero copy

 May avoid an extra copy that can happen on
unexpected messages

 Sometimes know this because of protocol
P0:
iRecv(0)
Ssend(1)

P1:
Recv(1)
Rsend(0)

Other Point-to Point Features

 MPI_Sendrecv

 MPI_Sendrecv_replace

 MPI_Cancel
 Useful for multi-buffering, multiple outstanding

sends/receives

MPI_Sendrecv

 Allows simultaneous send and receive
 Everything else is general.

 Send and receive datatypes (even type
signatures) may be different

 Can use Sendrecv with plain Send or Recv (or
Irecv or Ssend_init, …)

 More general than “send left”

Process 0

SendRecv(1)

Process 1

SendRecv(0)

Safety property

 An MPI program is considered safe, if the
program executed correctly when all point
to point communications are replaced by
synchronous communication

Synchronous send-receive

send_ completed

send_ posted

receive_ completed

receive_ postedwait

Advantage: one can reason about the state of the receiver

wait

a) Cannot complete before receiver
starts receiving data,

b) Cannot complete until buffer is
emptied

Synchronous send-receive

send_ completed

send_ posted

receive_ completed

receive_ postedwait

wait

Is this correct?

Deadlock

 Consequence of insufficient buffering

 Affects the portability of code

 Send a large message from process 0 to process 1
 If there is insufficient storage at the destination, the

send must wait for the user to provide the memory space
(through a receive)

 What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This is called “unsafe” because it depends on the
availability of system buffers

Some Solutions to the “unsafe”
Problem
 Order the operations more carefully:

Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

More Solutions to the “unsafe”
Problem
 Supply own space as buffer for send

Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Persistent Communication

Persistent Operations
 Many applications use the same communications

operations over and over
 Same parameters used many time

for(i=1,i<n, i++){
MPI_Isend(…)

 MPI_Irecv(…)
 MPI_Waitall(…)

}
 MPI provides persistent operations to make this

more efficient
 Reduce error checking of args (needed only once)
 Implementation may be able to make special provision for

repetitive operation (though none do to date)
 All persistent operations are nonblocking

Persistent Operations and Networks

 Zero-copy and “OS bypass”
 Provides direct communication between

designated user-buffers without OS
intervention

 Requires registration of memory with OS;
may be a limited resource (pinning pages)
 Examples are UNET, VIA, LAPI

 persistent communication is a good match
to this capability

Using Persistent Operations

 Replace
 MPI_Isend(buf, count, datatype, tag, dest, comm,
 &request)
with
 MPI_Send_init(buf, count, datatype, tag, dest, comm,
 &request)
 MPI_Start(request)

 MPI_Irecv with MPI_Recv_init, MPI_Irsend with
MPI_Rsend_init, etc.

 Wait/test requests just like other nonblocking requests, once
completed you call start again.

 Free requests when done with MPI_Request_free

Example: Sparse Matrix-Vector
Product
 Many iterative methods require matrix-vector

products
 Same operation (with same arguments) performed

many times (vector updated in place)
 Divide sparse matrix into groups of rows by

process: e.g., rows 1-10 on process 0, 11-20 on
process 1. Use same division for vector.

 To perform matrix-vector product, get elements
of vector on different processes with
Irecv/Isend/Waitall

Matrix Vector Multiply

=

Changing MPI Nonblocking to
MPI Persistent
 For i=1 to N

 ! Exchange vector information
 MPI_Isend(…)
 MPI_Irecv(…)
 MPI_Waitall(…)

 Replace with
 MPI_Send_init(…)
 MPI_Recv_init(…)
for i=1 to N
{
 MPI_Startall(2, requests)
 MPI_Waitall(2, requests, statuses)
}
MPI_Request_free(request(1))
MPI_Request_free(request(2))

Identical arguments

Context and communicators

Communicators

http://www.linux-mag.com/id/1412

Communicator

Communicator

Group (0….n-1)

Unique context ID

Communicators
 All MPI communication is based on a communicator

which contains a context and a group
 Contexts define a safe communication space for

message-passing
 Contexts can be viewed as system-managed tags
 Contexts allow different libraries to co-exist
 The group is just a set of processes
 Processes are always referred to by unique rank in

group

Pre-Defined Communicators

 MPI-1 supports three pre-defined
communicators:
MPI_COMM_WORLD
MPI_COMM_NULL

MPI_COMM_SELF (only returned by some functions, or in
initialization. NOT used in normal communications)

 Only MPI_COMM_WORLD is used for
communication

 Predefined communicators are needed to
“get things going” in MPI

Uses of MPI_COMM_WORLD
 Contains all processes available at the time the program was

started
 Provides initial safe communication space
 Simple programs communicate with MPI_COMM_WORLD

 Even complex programs will use MPI_COMM_WORLD for most
communications

 Complex programs duplicate and subdivide copies of
MPI_COMM_WORLD
 Provides a global communicator for forming smaller groups or

subsets of processors for specific tasks

0 1 2 3 4 5 6 7

MPI_COMM_WORLD

int MPI_Comm_split(MPI_Comm comm, int color,
 int key, MPI_Comm *newcomm)

Subdividing a Communicator
with MPI_Comm_split

 MPI_COMM_SPLIT partitions the group associated with
the given communicator into disjoint subgroups

 Each subgroup contains all processes having the same
value for the argument color

 Within each subgroup, processes are ranked in the
order defined by the value of the argument key, with
ties broken according to their rank in old
communicator

Subdividing a Communicator

 To divide a communicator into two non-
overlapping groups
color = (rank < size/2) ? 0 : 1 ;
MPI_Comm_split(comm, color, 0, &newcomm) ;

0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3

comm

newcomm newcomm

Subdividing a Communicator
 To divide a communicator such that

 all processes with even ranks are in one group
 all processes with odd ranks are in the other

group
 maintain the reverse order by rank
color = (rank % 2 == 0) ? 0 : 1 ;
key = size - rank ;
MPI_Comm_split(comm, color, key, &newcomm) ;

0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3

comm

newcomm newcomm

6 4 2 0 7 5 3 1

Example of MPI_Comm_split

int row_comm, col_comm;
int myrank, size, P, Q, myrow, mycol;
P = 4;
Q = 3;
MPI_InitT(ierr);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

/* Determine row and column position */
myrow = myrank/Q;
mycol = myrank % Q;
/* Split comm into row and column comms */
MPI_Comm_split(MPI_COMM_WORLD, myrow, mycol, row_comm);
MPI_Comm_split(MPI_COMM_WORLD, mycol, myrow, col_comm);

MPI_Comm_Split

 Collective call for the old communicator

 Nodes that don’t wish to participate can
call the routine with MPI_UNDEFINED as
the colour argument (it will return
MPI_COMM_NULL)

Groups

 Group operations are all local operations.
Basically, operations on maps (sequences
with unique values).

 Like communicators, work with handles to
the group

 Group underlying a communicator

Group Manipulation Routines
 To obtain an existing group, use

MPI_group group;
MPI_Comm_group (comm, &group)

 To free a group, use
 MPI_Group_free (&group)

 A new group can be created by specifying the members to be
included/excluded from an existing group using the following
routines
 MPI_Group_incl: specified members are included
 MPI_Group_excl: specified members are excluded
 MPI_Group_range_incl and MPI_Group_range_excl: a

range of members are included or excluded
 MPI_Group_union and MPI_Group_intersection: a new

group is created from two existing groups
 Other routines

 MPI_Group_compare, MPI_Group_translate_ranks

Subdividing a Communicator
with MPI_Comm_create

 Creates new communicators having all the processes in
the specified group with a new context

 The call is erroneous if all the processes do not
provide the same handle

 MPI_COMM_NULL is returned to processes not in the
group

 MPI_COMM_CREATE is useful if we already have a
group, otherwise a group must be built using the group
manipulation routines
int MPI_Comm_create(MPI_Comm comm, MPI_Group group,
MPI_Comm *newcomm)

Context

Contexts (hidden in communicators)

 Parallel libraries require isolation of messages
from one another and from the user that cannot
be adequately handled by tags.

 The context hidden in a communicator provides
this isolation

 The following examples are due to Marc Snir.
 Sub1 and Sub2 are from different libraries

Sub1();
Sub2();

 Sub1a and Sub1b are from the same library
Sub1a();
Sub2();
Sub1b();

Correct Execution of Library
Calls

Sub1

Sub2

Process 0 Process 1 Process 2

Recv(any)

Recv(any) Send(1)

Send(0)

Recv(1)

Recv(2)

Recv(0)Send(2)

Send(1)

Send(0)

Incorrect Execution of Library
Calls

Sub1

Sub2

Process 0 Process 1 Process 2

Recv(any)

Recv(any) Send(1)

Send(0)

Recv(2)

Recv(0)

Recv(1)

Send(2)

Send(1)

Send(0)
?

Program hangs (Recv(1) never satisfied)

Correct Execution of Library Calls
with Pending Communication

Recv(any)

Send(1)

Send(0)

Recv(any)

Recv(2)

Send(1) Recv(0)

Send(2)

Send(0)

Recv(1)

Sub1a

Sub2

Sub1b

Incorrect Execution of Library
Calls with Pending Communication

Recv(any)

Send(1)

Send(0)

Recv(any)

Recv(2)

Send(1) Recv(0)

Send(2)

Send(0)

Recv(1)

Sub1a

Sub2

Sub1b Program Runs—but with
wrong data!

Inter-communicators

Inter-communicators (MPI-1)
 Intra-communication: communication between processes that are

members of the same group
 Inter-communication: communication between processes in

different groups (say, local group and remote group)
 Both inter- and intra-communication have the same syntax for

point-to-point communication
 Inter-communicators can be used only for point-to-point

communication (no collective and topology operations with inter-
communicators)

 A target process is specified using its rank in the remote group
 Inter-communication is guaranteed not to conflict with any other

communication that uses a different communicator

Inter-communicator Accessor
Routines
 To determine whether a communicator is an intra-

communicator or an inter-communicator
 MPI_Comm_test_inter(comm, &flag)

flag = true, if comm is an inter-communicator
flag = false, otherwise

 Routines that provide the local group information when
the communicator used is an inter-communicator
 MPI_COMM_SIZE, MPI_COMM_GROUP, MPI_COMM_RANK

 Routines that provide the remote group information
for inter-communicators
 MPI_COMM_REMOTE_SIZE, MPI_COMM_REMOTE_GROUP

Inter-communicator Create

 MPI_INTERCOMM_CREATE creates an inter-
communicator by binding two intra-
communicators
 MPI_INTERCOMM_CREATE(local_comm,local_leader,

 peer_comm, remote_leader,tag, intercomm)

peercomm

comm1 comm2

intercomm

local leader remote leader

Inter-communicator Create (cont)
 Both the local and remote leaders should

 belong to a peer communicator
 know the rank of the other leader in the peer communicator

 Members of each group should know the rank of their leader
 An inter-communicator create operation involves

 collective communication among processes in local group
 collective communication among processes in remote group
 point-to-point communication between local and remote

leaders

MPI_SEND(..., 0, intercomm)
MPI_RECV(buf, ..., 0, intercomm);
MPI_BCAST(buf, ..., localcomm);

Note that the source and destination ranks are specified w.r.t the
other communicator

MPI Collectives

MPI Collective Communication
 Communication and computation is coordinated

among a group of processes in a communicator.
 Groups and communicators can be constructed “by

hand” or using topology routines.
 Tags are not used; different communicators

deliver similar functionality.
 No non-blocking collective operations.
 Three classes of operations: synchronization, data

movement, collective computation.

Synchronization

 MPI_Barrier(comm)

 Blocks until all processes in the group of
the communicator comm call it.

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0
P1

P2

P3

P0
P1

P2

P3

Comments on Broadcast

 All collective operations must be called by
all processes in the communicator

 MPI_Bcast is called by both the sender
(called the root process) and the processes
that are to receive the broadcast
 MPI_Bcast is not a “multi-send”
 “root” argument is the rank of the sender; this

tells MPI which process originates the
broadcast and which receive

 Example of orthogonally of the MPI design:
MPI_Recv need not test for “multi-send”

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0A1A2A3

B0 B1 B2 B3

D0D1D2D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0
P1

P2

P3

P0
P1

P2

P3

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

MPI Collective Routines

 Many Routines: Allgather, Allgatherv, Allreduce,
Alltoall, Alltoallv, Bcast, Gather, Gatherv,
Reduce, Reduce_scatter, Scan, Scatter, Scatterv

 All versions deliver results to all participating processes.

 V versions allow the chunks to have different sizes.

 Allreduce, Reduce, Reduce_scatter, and Scan take both
built-in and user-defined combiner functions.

Collective Communication

 Optimized algorithms, scaling as log(n)
 Differences from point-to-point

 Amount of data sent must match amount of data
specified by receivers

 No tags
 Blocking only

 MPI_barrier(comm)
 All processes in the communicator are synchronized. The

only collective call where synchronization is guaranteed.

Collective Move Functions

 MPI_Bcast(data, count, type, src, comm)
 Broadcast data from src to all processes in the

communicator.
 MPI_Gather(in, count, type, out, count,
type, dest, comm)
 Gathers data from all nodes to dest node

 MPI_Scatter(in, count, type, out,
count, type, src, comm)
 Scatters data from src node to all nodes

Collective Move Functions
data

pr
oc

es
se

s

broadcast

scatter

gather

Collective Move Functions

 Additional functions
 MPI_Allgather, MPI_Gatherv,
MPI_Scatterv, MPI_Allgatherv,
MPI_Alltoall

Collective Reduce Functions

 MPI_Reduce(send, recv, count, type, op,
root, comm)
 Global reduction operation, op, on send buffer.

Result is at process root in recv buffer. op may
be user defined, MPI predefined operation.

 MPI_Allreduce(send, recv, count, type,
op, comm)
 As above, except result broadcast to all

processes.

Collective Reduce Functions
data

pr
oc

es
se

s

reduce

allreduce

D3C3B3A3

D2C2B2A2

D1C1B1A1

D0C0B0A0 D0+D1+
D2+D3

C0+C1+
C2+C3

B0+B1+
B2+B3

A0+A2+
A3+A4

D3C3B3A3

D2C2B2A2

D1C1B1A1

D0C0B0A0

D0+D1+
D2+D3

C0+C1+
C2+C3

B0+B1+
B2+B3

A0+A2+
A3+A4

D0+D1+
D2+D3

C0+C1+
C2+C3

B0+B1+
B2+B3

A0+A2+
A3+A4

D0+D1+
D2+D3

C0+C1+
C2+C3

B0+B1+
B2+B3

A0+A2+
A3+A4

D0+D1+
D2+D3

C0+C1+
C2+C3

B0+B1+
B2+B3

A0+A2+
A3+A4

Collective Reduce Functions

 Additional functions
 MPI_Reduce_scatter, MPI_Scan

 Predefined operations
 Sum, product, min, max, …

 User-defined operations
 MPI_Op_create

MPI Built-in Collective
Computation Operations
 MPI_Max
 MPI_Min
 MPI_Prod
 MPI_Sum
 MPI_Land
 MPI_Lor
 MPI_Lxor
 MPI_Band
 MPI_Bor
 MPI_Bxor
 MPI_Maxloc
 MPI_Minloc

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Binary and
Binary or
Binary exclusive or
Maximum and location
Minimum and location

