
Notes on the CpSc 418 Course Erlang Library
Draft version: no bug-bounties (yet) for minor spelling and grammar errors.

1 Distributed Lists
In Erlang, lists are the primary data structure. To write efficient parallel code, we need each process to store
data locally as much a possible. This means we need to be able to take a large list, and distribute across
the processes. The workers library provides functions workers:update workers:retrieve to do this. The
function misc:cut in the misc module is helpful as well.

Let’s say that L101 is a long list. For this example, L101 will be the list lists:seq(1,101), i.e.
[1,2,ldots,101] – that’s not very “long”, but it means I can write out the example without using hun-
dreds of pages to print the list. Let W8 be a worker-tree with eight processes. We can partition L101 into
eight smaller lists using misc:cut:

misc:cut(L101, W8) ->
[[1,2,3,4,5,6,7,8,9,10,11,12], % 12 elements

[13,14,15,16,17,18,19,20,21,22,23,24], % 12 elements
[25,26,27,28,29,30,31,32,33,34,35,36], % 12 elements
[37,38,39,40,41,42,43,44,45,46,47,48,49], % 13 elements
[50,51,52,53,54,55,56,57,58,59,60,61,62], % 13 elements
[63,64,65,66,67,68,69,70,71,72,73,74,75], % 13 elements
[76,77,78,79,80,81,82,83,84,85,86,87,88], % 13 elements
[89,90,91,92,93,94,95,96,97,98,99,100,101]] % 13 elements

The first argument to misc:cut is the list to split up. The second argument tells misc:cut how many pieces
to make. In a bit more detail,

• If the second argument to misc:cut(L, N) is an integer, then L is divided into N segments.

• If the second argument to misc:cut(L, W) is an list, then L is divided into length(W) segments.

Why have the second case? Because worker trees such as W8 are represented as lists. The length of this list is
the number of workers. Of course, I’d prefer that you didn’t depend on knowing the internal data structures
of the workers and wtree modules. In the not-too-likely event that I were to change the representation of
worker trees, I would revise misc:cut to work with the new representation – I promise.

Now that we have divided misc:cut into pieces, we need to send these pieces to the workers. The function
workers:update does just this. The general form is

workersupdate(W, Key, ListOfValues)

where length(ListOfValues) matches the number of workers in W. For example,
workersupdate(W8, my_list, misc:cut(L101, W8))

will divide misc:cut(L101) into eight pieces and send each process of W8 a separate piece. The workers in
the tree are ordered from left-to-right, and the values of ListOfValues are distributed in that order. In
other words, the leftmost worker process receives the first value of ListOfValues and so on.

What is the Key all about? The workers need a way to access these values. For reduce, scan, and other
operations, you will provide functions for these worker processes to access. How do they get the list you
just sent? You will note that the Leaf functions for wtree:reduce or wtree:scan have one parameter,
ProcState. ProcState is an association list that pairs keys with values. The worker processes access values
in ProcState using the functions wtree:get and wtree:put (equivalently, workers:get and workers:put.
In particular:

wtree:get(ProcState, Key) returns the value in ProcState associated with Key. If there is no value
associated with Key, then the atom undefined is returned.

1

http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#update-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#retrieve-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#update-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#cut-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#reduce-4
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#get-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#put-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#get-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#put-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#get-2

wtree:get(ProcState, Key, Default) returns the value in ProcState associated with Key. If there is no
value associated with Key, then the value of the parameter Default is returned.

wtree:put(ProcState, Key, Value) associate Key with Value in ProcState. Wait a second – Erlang is
functional! Right. wtree:put creates a new association list, let’s call it ProcState2. ProcState2 has
all of the {K, V} mappings that were in ProcState plus the mappping {Key, Value}. If the mappping
{Key, OldValue} was already present in ProcState, then ProcState2 has all of the mappings of
ProcState except for {Key, OldValue} and it has the mapping {Key, Value}. In other words, the
mapping for {Key, OldValue} in ProcState is replaced with {Key, Value} in ProcState2.

2 Reduce and Scan
The functions wtree:reduce and wtree:scan make use of ProcState and that typically involves distributed
lists as described above. First, let’s look at wtree:reduce(W, Leaf, Combine, Root) where W is a worker-
tree produced by wtree:create.

Leaf(ProcState) -> Value: ProcState is an association of keys to values for this process as described
above. This is how the process finds the data that it is to work on. Value is the value that Leaf
computes based on ProcState and returns for the Combine tree. We typically use an Erlang fun()
expression to capture information about what key to use to access ProcState and any other details
that Leaf may need. I should put an example here, but I’m running out of time.

Combine(Left, Right) -> Value: Left and Right are the values from the left and right subtees of this
node. Combine them into a single value. Note that Left, Right, and Value should all be of the same
“type”. For example, if Left and Right are numbers and Value is a tuple, you’re probably doing
something wrong, and the call to Combine in the next level of the tree will probably crash. Note
that Combine does not take ProcState as a parameter. Anything you need to know about ProcState
should be included in the values returned by Leaf and Combine. However, if you’re returning the
entire segment of a distributed list for that leaf-node or subtree, you probably aren’t doing the reduce
correctly.

Root(Value0) -> Value1: again, no ProcState.

I’ll continue this document with a description of wtree:scan and wtree:rlist. The key points are
that the Leaf2 function for wtree:scan should return an updated ProcState. The function wtree:rlist
produces a random list that is distributed across the workers of a worker tree.

2

http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#get-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#put-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#put-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#reduce-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#reduce-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#create-1
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#rlist-4
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#rlist-4

	Distributed Lists
	Reduce and Scan

