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1 Peterson’s Algorithm
I’ll use Peterson’s mutual exclusion algorithm as an example through much of this document. Figure 1 shows the code.
I assume that there are two clients that use the lock. Each client performs the operations:

C1: int my id = ...; % 0 or 1
C2: bool done = ...; % set by the non-critical code
C3: non-critical code;
C4: while(not done) {
C5: lock(my id);
C6: critical section;
C7: unlock(my id);
C8: non-critical code;
C9: }

In English, each client starts in its not critical code. Any number of times (including zero), it may request the lock;
execute code in a critical section once it has the lock; release the lock; and execute code that doesn’t require protection
by the lock. To show that Peterson’s algorithm guarantees mutual exclusion, we want to prove that the program can
never enter a state where both clients are in their critical sections at the same time.

Let PC[i] indicate the current “program counter” of thread i. To show mutual exclusion, we what to show that

¬((PC[0] = C6) ∧ (PC[1] = C6))

holds at all times.

P01: % shared variables:
P02: bool flag[2] = {false, false};
P03: int victim = 0;
P04:
P05: lock(myId) {
P06: int otherId = 1 - myId;% know your neighbour
P07: flag[myId] = true; % express intent to lock
P08: victim = myId; % you go first, please
P09: while(flag[otherId] && (victim == myId)); % spin
P10: }
P11:
P12: unlock(myId) {
P13: flag[myId] = false;
P14: }

Figure 1: Peterson’s Mutual Exclsusion Algorithm
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2 Modes
With 14 lines of code for Peterson’s algorithm and 9 for the clients, we could try to reason about all 23 possible PC
values for both thread, a total of 529 combinations. I’ll simplify this by identifying four “modes” for each thread.

• What’s a mode? It’s a name given to a range of PC values.

• How do we pick these ranges? Look for “significant events.” For example, entering or leaving the critical
region and changes to shared variables that are used by the mutual exclusion algorithm.

For this example, I’ll identify the following modes:

Idle: The thread doesn’t have the lock nor is it trying to acquire it. This is:

PC[i] ∈ {C0, . . .C5}, before requesting the lock);

PC[i] ∈ {P05,P06}, in the lock() function but the thread hasn’t changed any global variables yet;

PC[i] = P14, in the unlock() function and done changing global variables;

PC[i] ∈ {C8,C9}, in the client, after the return from unlock() and before the next call (if any) to lock().

Enter: PC[i] = P08, the thread has indicated its intention to acquire the lock by setting flag[i], but it hasn’t set
victim yet.

Spin: PC[i] = P09, the thread is spinning, waiting to enter its critical region.

Crit: the thread is in its critical region,

PC[i] = {P10, . . .P13}, returning from lock() or just called unlock() but the thread hasn’t changed
any global variables yet.

PC[i] = {C6,C7}, the client is in its critical section, or is ready to call unlock().

Let mode(i) denote the “mode” (Idle, Enter, Spin, or Crit) of thread i. Now we can state the mutual exclusion property
as:

¬((mode(0) = Crit) ∧ (mode(1) = Crit))

While this property holds initially, when both threads are in mode “Idle”, how can we show that it holds throughout
the execution?

3 Reachable states
I’ll describe the state of the program with a triple {mode, flag, victim}. The initial state of the program is:

{mode, flag, victim} = {[Idle, Idle], [false, false], 0}

A state, s, is reachable if s is the initial state or if there is a state r that has been shown to be reachable, and s is
reachable from r by performing one step of thread 0 or thread 1. I’m being somewhat informal in this explanation
because I’m using the modes rather than the detailed PC, but it makes the examples way simpler.

For example, from then initial state, we could perform actions of thread 0 until it modifies at least one of mode,
flag, or victim. This means that thread 0 completes its non-critical section, calls lock() and reaches line P08
where it is in mode “Enter” with flag[0] = true. Thus we conclude that state

{[Enter, Idle], [true, false], 0}

Conversely, we could have considered an execution where thread 1 reaches line P08 first, and obtain the state

{[Idle, Enter], [false, true], 0}
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From each of these states, we could explore what other states they can reach by performing actions of thread 0 or
thread 1. Because the state consists of two mode variables (each of which can take one of four values), two flag
variables (each of which can take one of two values), and the victim variable (that must be either 0 or 1), there are
at most (4 · 4) · (2 · 2) · 2 = 128 reachable states. So, this state exploration will terminate, and we could determine
whether or not the program can reach a state where both threads are in mode “Crit”, thus violating mutual exclusion.
This is a very tedious way to verify a program, and it’s impractical for a program with even a few more variables.

4 Invariants
Invariants give us a way of proving properties of all reachable states of a program without having to enumerate these
states one by one. Let I be a predicate over states. In other words, if s is a state (reachable or not) of the program,
then I(s) is either true or false – that’s just saying that I is a predicate. Let s be any state of the program – we won’t
worry about whether or not s is reachable – as I illustrated above, it can be hard work to figure out whether or not a
state is reachable – that’s why we are using invariants! Let s′ be any state that is reachable in one step from s. For our
example with Peterson’s algorithm, we can start with state s and ask: what happens if we perform one step of thread
0 starting from state s? What happens if we execute one step of thread 1?

We say that I is an invariant if for any states s and s′ such that s′ is reachable in one step from s, then if I holds
in state s, i also must hold in state s′. If you prefer formulas, let S be the set of all states (reachable or not) of the
program, and let R ⊆ S × S be the relation such that (s, s′) ∈ R iff the program can move from state s to state s′ in
one step of one of the threads.

IsInvariant(I ) ≡ ∀(s, s′) ∈ R. I(s)⇒ I(s′)

Of course, if you prefer English to math formulas, the sentence at the beginning of this paragraph says the same thing.
Here’s the wonderful thing about invariants: if a program ever reaches a state that satisfies some invariant, I ,

then all subsequent states of the program will satisfy I – we just repeatedly apply the fact that I holding in one state
guarantees that I will hold in the next state. Now, let’s say we find an invariant I that holds in the initial state state of
the program. Then, I holds in all reachable states of the program. Let Q be some property (such as mutual exclusion)
that we want to have hold in all states of the program. If we can find an invariant I such that I holds in the initial state
of the program, and I implies Q, then we know that Q must hold in all reachable states of the program. To verify that
I is an invariant, we only need to reason about individual actions of the program. In particular, invariants spare us
from having to reason about long sequences of states.

Why not just use Q as our invariant? Consider the mutual exclusion problem again. We have:

Q = ¬((mode(0) = Crit) ∧ (mode(1) = Crit))

Consider the state
s = ¬{[Crit, Spin], [false, false], 0}

Clearly, s satisfies Q. However, if we perform one step of thread 1, we reach the state

s′ = ¬{[Crit, Crit], [false, false], 0}

which violates mutual exclusion – it doesn’t satisfy Q. Does this mean that Peterson’s algorithm is faulty? No. It just
means that state s is not reachable by the program. How can we show that? We’ll use an invariant.

5 Finding an invariant
Let’s continue with the example above. Why do we believe that state s is unreachable? If we look at the Nov. 14
slides, we’ll see that we found a relation between flag[i] and mode(i):

flag[i] = mode(i) ∈ {Enter, Spin, Crit}
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I1 ≡ ∀i ∈ {0, 1}. flag[i] = (mode(i) ∈ {Enter, Spin, Crit})
We can easily show that I1 is an invariant. We do this by considering each action of the program:

Thread i makes a transition from “Idle” to “Enter”: This occurs at line P07which sets flag to true. Thus mode(i) =
Enter and flag[i] = true after performing the action. The invariant holds after performing the action.

Thread i makes a transition from “Enter” to “Spin”: This occurs at line P08 which leaves flag unchanged. By the
assumption that I1 held before performing the action (think of it as the “induction hypothesis”), flag[i] must
have been true before performing the action. Thus mode(i) = Spin and flag[i] = true after performing
the action. The invariant holds after performing the action.

Thread i makes a transition from “Spin” to “Crit”: By an argument similar to the one above, flag[i] must be true
before and after performing the action. Thus, the invariant continues to hold.

Thread i makes a transition from “Crit” to “Idle”: This occurs at line P13 which sets flag to false. Thus
mode(i) = Idle and flag[i] = false after performing the action. The invariant holds after performing the
action.

It’s easy to see that I1 holds in the initial state. However, I1 ⇒ Q is not a logical identity – in particular, I1 allows both
threads to be in mode “Crit” if flag[0] and flag[1] are both true. Our invariant needs to be a bit more specific.

Let’s try I1 ∧ Q. Clearly, any state that satisfies I1 ∧ Q satisfies Q. We’ve already shown that the initial state
satisfies I1 and that it satisfies Q, thus, it satisfies I1 ∧Q. If we could show that I1 ∧Q is an invariant, we’d be done.
Unfortunately, it is not. We can try repeating the arguments that we gave for showing that I1 is an invariant. Three of
the four cases work. We hit a problem when we consider:

Thread i makes a transition from “Spin” to “Crit”: Consider the case that thread i = 1 and mode(0) = Crit; in other
words, thread 1 is spinning, and thread 0 is in its critical section. Looking at the “spin” statement:

P09: while(flag[otherId] && (victim == myId)); % spin

If thread 1 is in its critical section, then flag[0] will be set, and thread 1 will only execute its spin-loop if
victim != 1. Consider the state

s = ¬{[Crit, Spin], [true, true], 0}

The state s satisfies I1 ∧Q. However, if we perform one step of thread 1, we reach the state

s′ = ¬{[Crit, Crit], [true, true], 0}

and mutual exclusion is violated.

Again, we ask the question: “Why do we believe that state s is unreachable?” We might guess that we need to
show that when a thread i is spinning, that victim == i, but that’s not quite right – if a thread makes an uncontested
request for the lock, it will reach the “Spin” mode with victim set to itself. We need to be a bit more specific. After
we think about it a bit, we realize that the issue is that if thread i is spinning and the other thread is in its critical
region, then the spinning thread must be the victim. As a logic formula we write:

(mode(i) = Spin) ∧ (mode(1− i) = Crit) ⇒ victim = i

We include this in our invariant and get:

I2 ≡ ∀i ∈ {0, 1}. flag[i] = (mode(i) ∈ {Enter, Spin, Crit})
∧ ∀i ∈ {0, 1}. ((mode(i) = Spin) ∧ (mode(1− i) = Crit))⇒ (victim = i)
∧ victim ∈ {0, 1}
∧ ¬((mode(0) = Crit) ∧ (mode(1) = Crit))

I added the clause about victim because I’ll need it in the proof – it’s pretty obvious that it holds. Again, we prove
the invariant by considering each action of each thread:
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Thread j makes a transition from “Idle” to “Enter”: Pretty much the same argument as for I1. You can check your
understanding of the approach by writing out why if I2 holds before this action, it must hold afterwards.

Thread j makes a transition from “Enter” to “Spin”: This occurs at line P08 which leaves flag unchanged, and sets
victim = i. The first clause of I2 holds by the same argument as used for I1. The second clause holds for
i = j because the action sets victim to j. The second clause holds for i 6= j because the action sets mode(j)
to “Spin”; thus,

mode(1− i) = mode(j) = Spin 6= Crit

The third clause holds because victim is set to j and j is either 0 or 1. The fourth clause holds because the
action sets mode(j) to “Spin” which ensures that there is a thread whose mode is not “Crit”.

Thread j makes a transition from “Spin” to “Crit”: The first clause of I2 holds by the same argument as used for I1.

We now show that the second clause of I2 hold after performing this action:

∀i ∈ {0, 1}. ((mode(i) = Spin) ∧ (mode(1− i) = Crit))⇒ (victim = i)

After this action is performed, this thread will be in mode “Crit”; so the clause will hold for i = j (because the
left side of the implication will be false).

If the other thread is spinning, then the left side of the implication will be satisfied for i = 1 − j after this
action has been performed. Thus, we need to show that victim = 1− j will hold as well. By the assumption
that the other thread is spinning, flag[1 − j] holds. Because thread j was enabled to exit its spin-loop, we
conclude that victim 6= j. From the third clause of the invariant, we get that victim must be 0 or 1; thus
victim = 1 − j. This establishes the right side of the implication (of the second clause of the invariant) for
i = j − 1 in the case that the other thread is spinning. If the other thread is not spinning, then the second clause
is satisfied for i = j − 1 because the left side of the implication is false.

The third clause holds because the value victim is not modified.

Now we get to the fourth clause of the invariant, mutual exclusion. This is the case that we needed to repair from
our previous attempt. As noted above, if thread j can exit the while-loop at line P09, then either flag[1-j] =
false, or victim 6= j. Now consider the second clause of the invariant with i = j

((mode(j) = Spin) ∧ (mode(1− j) = Crit))⇒ (victim = j)

We have shown that prior to performing this action, mode(j) = Spin and victim = j. Therefore, mode(1−
j) 6= Crit before performing the action. Because this action does not change mode(1 − j) (the other thread),
mode(1− j) 6= Crit holds after performing this action. Thus, the fourth clause of I2 hold after performing this
action.

We’ve shown that all clauses of I2 hold after performing this action; therefore, I2 holds after performing this
action.

Thread i makes a transition from “Crit” to “Idle”: Pretty much the same argument as for I1. You can check your
understanding of the approach by writing out why if I2 holds before this action, it must hold afterwards.

We’ve shown that I2 is an invariant. I2 hold in the initial state and I2 ⇒ Q. From this, we conclude that Q holds
in all reachable states of the program.
HOORAY!!! We’ve shown that Peterson’s algorithm guarantees mutual exclusion.

6 Generalizing the recipe
When trying to prove that some property holds in all states of a concurrent program, here are some steps that are often
helpful.
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1. Identify “modes” of the program. In HW4, Q4, I provided these and called them states. More generally, it’s
good to look for key transitions (e.g. entering or leaving a critical region), or statements that change the values
of shared variables that are used to coordinate the actions of the threads. In the example above, this changed the
program from having 23 PC values per thread to 4 modes (again, per thread), a big simplification.

2. Consider a few executions of the program to get an intuitive understanding of how it works.

3. Try writing an invariant that corresponds to your intuitive understanding of how the program works.

4. Verify the invariant:

(a) Does it hold in the initial state?

(b) Can you show that for each action of each thread, the invariant holding before the action implies that the
invariant holds after the action? Note that the proposed invariant is your idea of what relations have to hold
between the shared variables to make the program work, to show that it can’t move to a “bad” state.

(c) Does your invariant imply the property that you’re trying to show?

5. Often, your first try for an invariant won’t quite work. Typically, you get a counterexample. The counter-
example is either a state in which the invariant holds but performing an action by some thread leads to a state
that violates the invariant, or its a state in which the invariant holds, but the property that you’re trying to show
(e.g. mutual exclusion) is violated. Often, by thinking about that counterexample state, you can recognize why
the program can’t actually get to states like that. Then, you can add another clause or two to your proposed
invariant and try again.

6. Of course, if you have a program that has a bug in it, you won’t be able to find an invariant that proves the
program correct. In this case, the counter-examples can lead you to finding an example execution that shows
how the program can fail.

7 Review
Solve HW4.Q4.
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