
CUDA: Big Picture

Mark Greenstreet

CpSc 418 – November 28, 2018

Data Parallel Computation
Grids, Blocks, and Threads
But, the hardware isn’t hidden (very well? at all?)

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 1 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Data Parallel Computation

Matrix Multiplication

for(i = 0; i < N; i++) {
for(j = 0; j < N; j++) {

sum = 0.0;
for(k = 0; k < N; k++)
sum += a[i,k] + b[k,j];

c[i,j] = sum;
} }

Data parallel: all iterations of the i and j loops are independent.
But the compiler doesn’t know that – it can’t rule out pointer
aliasing.
So, we will use a special CUDA construct to tell the compiler that
we “promise” that c overlaps neither a nor b.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 2 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Matrix Multiply in CUDA (ver. 1)
global mmult kernel(uint N, float *a, float *b, float *c) {
uint i = threadIdx.y; // my row
uint j = threadIdx.x; // my column
float sum = 0.0;
for(uint k = 0; k < N; k++)
sum += a[i*N + k] + b[k*N + j];

c[i*N + j] = sum;
}
...
mmult(uint N, float *a, float *b, float *c) {

dim3 dimBlock(N, N, 1); // dimensions in x, y, and z
dim3 dimGrid(1, 1, 1); // what’s a grid?
mmult kern<<<dimGrid, dimBlock>>>(N, a, b, c);

}

Create one thread for each element of c.
Compute all of the elements in parallel.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 3 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Grids, Blocks, and Threads

On the previous slide, we launched a kernel with one block that
had one thread per element of c.

I Why? Because we took a software point-of-view and don’t know
how the hardware actually implements it.

I But, CUDA has blocks and grids.
A block is an array of threads.

I Can be 1, 2, or 3 dimensional.
I That’s awesome. I used a 2-dimensional block to correspond with

the rows and columns of my matrix.
I A block can have at most 1024 threads?
I Why? Because a block is implemented by the hardware, and there

are limited resources.
I But, CUDA has blocks and grids.

A grid is an array of blocks.
I grids are implemented by the CUDA runtime (software).
I grids can be huge.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 4 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Matrix Multiply in CUDA (ver. 2)
global mmult kernel(uint N, float *a, float *b, float *c) {
uint i = 32*blockIdx.y + threadIdx.y; // my row
uint j = 32*blockIdx.x + threadIdx.x; // my column
if((i < N) && (j < N)) {

float sum = 0.0;
for(uint k = 0; k < N; k++)
sum += a[i*N + k] + b[k*N + j];

c[i*N + j] = sum;
}
}
...
mmult(uint N, float *a, float *b, float *c) {
dim3 dimBlock(32, 32, 1); // dimensions in x, y, and z
dim3 dimGrid(ceil(N/32.0), ceil(N/32.0), 1); // what’s a grid?
mmult kern<<<dimGrid, dimBlock>>>(N, a, b, c);

}

We need if((i < N) && (j < N)) because of rounding up
on number of blocks.
We needed it anyway because of warps, but warps are a
hardware detail we haven’t put into the story yet.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 5 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Grids, Blocks, and Threads (part 2)

A grid is an array of blocks.
I Grids can be huge.
I No communication between threads in different blocks.
I What if different threads read and write the same location in

memory?
F No guarantees on the order.
F No guarantees on coherence (e.g. no promise of sequential

consistency).

A block is an array of threads
I Block size limited by hardware: max 1024 threads per block.
I Threads in a block can communicate using “shared memory”
I What’s shared memory, and why should I care?

This leads us to global memory, coalesced references, shared
memory, bank conflicts, and thread synchronization.

I Now we need to know about warps, and the underlying execution
model.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 6 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


GPU: Top-Level Architecture

(high−end, "Pascal" generation)

GDDR

GDDR

G
D

D
R

G
D

D
R

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM
L2$

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SMSM

GTX 1080 Architecture

GPUs in the the
linXX.ugrad.cs.ubc.ca
machines

GeForce GTX 1060
9 SMs (10 on chip, 9
reported by the device):

I 128 SPs/SM.
I That’s 1152 SPs on the

chip.
I Each SM can schedule

4 warps in a single
cycle.

∼ 1.6GHz clock
frequency.
3 GBytes of GDDR5
memory,
∼ 192GBytes/sec. memory
bandwidth.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 7 / 11

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1060/specifications
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


A Streaming Multiprocessor (SM)

warp

F

I
registers

lots of
deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

shared
memory

shared
memory

shared
memory

I$
PC

D
E
C

ctrl

scheduler

inst inst

crossbar
switch

I omitted the connections from the pipelines to the
crossbar because the figure is already quite full.

Each of the pipelines is an SP (streaming processor)
Lots of deep pipelines.
Lots of threads: when we encounter an architectural challenge:

I Raising throughput is easy, lowering latency is hard.
I Solve problems by increasing latency and adding threads.
I Make the programmer deal with it.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 8 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Threads, Warps, SMs, Blocks, . . .

Each warp has a warp index: w .
Each thread in a warp executes on a particular SP, s.
We can compute a “raw thread index” (within the block):

rti = 32 ∗ w + s

The block has threadIdx.x, threadIdx.y, and
threadIdx.z:

I threadIdx.x = rti % blockDim.x
I threadIdx.y = (rti / blockDim.x) % blockDim.y
I threadIdx.r = (rti / (blockDim.x * blockDim.y)

Isn’t that a lot of work to calculate those indices?
I Done once when the block is dispatched.
I Each thread stores its threadIdx, blockIdx, blockDim, and
gridDim variables in dedicated registers.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 9 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


The big thing about warps

Programmers are supposed to pretend that they don’t know about
warps – warps are a hardware thing.
Programmers must know about warps to get good performance:

I Coalescing memory references.
I Avoiding shared-memory bank conflicts.
I Warp-level synchronization is fast.

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 10 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018


Preview

November 30: Review
Dec 3: Final Exam review session (piazza poll)
Dec 4: Final Exam – 8:38am (ouch!)

Greenstreet CUDA: Big Picture CpSc 418 – Nov. 28, 2018 11 / 11

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_28
https://en.wikipedia.org/wiki/2018

