
CUDA: Performance Considerations

Mark Greenstreet

CpSc 418 – November 26, 2018

Occupancy
Thread Divergence
Instruction Mix

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 1 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Occupancy

We want lots of threads running on each SM. How do we get this?
To keep every SM busy, the number of blocks should be greater
than the number of SMs.

I An SM can have 2048 threads, but a block can have at most 1024
threads.

I We want at least two blocks per SM. More is better.
Limits on occupancy

I At most 8 blocks per SM.
I 216 registers/SM. Use
nvcc -O3 -c --ptxas-options -v examples.cu

I 96Kbytes of shared memory per SM. At most 48Kbytes/block.
I Check out the occupancy calculator:

CUDA Occupancy calculator.xls

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 2 / 12

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Predicated Execution
What about if (or for)?
When a warp executes the if, all threads execute it?

I What if some threads take the then-branch and others take the
else-branch?

Predicated execution.
I Each thread keeps a bit saying whether it’s a then-thread or an

else-thread.
I The GPU fetches instructions from the then and else clauses, and

marks them as then-instructions or else-instructions
I The then-threads execute then-instructions and ignore

else-instructions.
F The else-instructions are still fetched and dispatched for the SPs that

need them.
F They are treated as NOPs by the SPs for then-threads, but they take

up excution time.
I Likewise, the else-threads execute else-instructoins and ignore

then-instructions.

Predication handles multiple levels of control flow nesting.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 3 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Thread Divergence and Performance

If a warp consists of a mix of then-threads and else-threads
I Then instructions are are fetched that are ignored by some

pipelines.
I This results in performance loss.
I Simple estimate: if half of instructions then-instructions and half are

else-instructions then 50% efficiency when divergent.
It can be worse

I Nested if-then-else statements: can divide threads into more than
two groups.

I For-loops with thread-dependent bounds: e.g. reduce.
I While-loops.

It can be better
I If all threads in a warp are then-threads, then the else-instructions

aren’t fetched.
I Else if all the threads are else-threads, then the then-instructions

aren’t fetched.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 4 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Thread Divergence and syncthreads()

syncthreads() requires all threads in the block to reach the
call along convergent paths.
E.g. a syncthreads() in a then-clause for one thread can’t
match a synchthreads() in a else-clause for another thread.
Likewise, if there is a syncthreads() in the body of a for-loop,
all threads must reach it on the same iteration.
Getting this wrong leads to deadlock: the block hangs forever at
the syncthreads()

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 5 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Instruction Mix

We measure our program performance in terms of the critical,
unavoidable operations

I Typically “floating point operations” for matrix-multiplication or other
scientific computing applications.

I Often main memory accesses for sorting, or other data-intensive
applications.

But, the program does other operations as well
I This is where you see me counting instructions on my fingers

during lecture.
I Optimizing performance can involve minimizing this overhead:

F Good algorithm design.
F Memory access optimization.
F Loop unrolling

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 6 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Bigger Kernels

global myKernel(. . .) {
do something

}

Unless do something is big, kernel launch takes most of the time.
We can launch a big-grid

I If we have a huge number of array elements than each need a
small amount of work, this can be a good idea.

I BUT we’re likely to create a memory-bound problem.
Or, we can make each thread do many somethings.

global myKernel(int m, . . .) {
for(int i = 0; i < m; i++)

do something
}

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 7 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Loop Limitations

It takes two or three instructions per loop iteration to manage the
loop:

I One to update the loop index
I One or two to check the loop bounds and branch.
I If do something is only three or four instructions, then 40-50% of

the execution time is for loop management.
If each iteration of do something depends on the previous one

I Then the long latency of the SP pipelines can limit performance.
I Even if we have 64 warps running.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 8 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Loop Unrolling

Have each loop iteration perform multiple copies of the loop body
global myKernel(int m, . . .) {
for(int i = 0; i < m; i += 4) {

do something 1
do something 2
do something 3
do something 4

}
}

More “real work” for each time the loop management code is
executed.
Need to make sure that m is a multiple of four, or handle
end-cases separately.
Often, we need more registers.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 9 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Unrolling – the plots

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ex
ec

ut
io

n 
tim

e 
(n

or
m

al
iz

ed
)

1

1.5

2

2.5

3

3.5

4
execution time vs. unrolling depth

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

FL
O

PS
 (n

or
m

al
iz

ed
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
FLOPS vs. unrolling depth

This example is from 2015W2 HW3, Q1.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 10 / 12

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/index.html
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/3/hw3.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Examples

You choose:
Merge-sort vs. bitonic sort on a GPU.
Reduce on a GPU.
Homework 5.
Homework 6

I I’ll post review questions.
I But there won’t be a graded HW6.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 11 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Preview

November 28: CUDA (and other) Examples
November 30: Review
Dec 3: Final Exam review session (piazza poll)
Dec 4: Final Exam – 8:38am (ouch!)

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 26, 2018 12 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018

