
CUDA: Performance Considerations

Mark Greenstreet

CpSc 418 – November 23, 2018

Occupancy
Thread Divergence
Instruction Mix

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 1 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


First a quick summary of the last lecture

Floating point operation:
I GPU single-precision floating point is much faster than

double-precision
I Use floats instead of doubles when you can

F I would give the opposite advice for programming an x86.
F Pay attention when using libraries.

I Remember the f when writing floating point constants: e.g.
3.14159265f.

Memory
I Estimate your CGMA – global accesses are probably your

bottleneck
I Coalesce global memory accesses:

F Warp locality matters.
F Temporal locality, not so much.

I Avoid shared memory branch conflicts
F Think about how array indices connect to thread indices.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Measuring Time

From piazza, but worth repeating to make sure everyone gets it.
Adjust ntrials for saxpy or m for recur1 and recur2 to get a
total time between 10ms and 0.25 seconds.

I 1 ms = 1 millisecond = 1.0e-03 seconds.
I 10 ms = 1.0e-02 seconds.
I 0.25 seconds = 2.5e-01 seconds.

If you have a total time of 0 seconds, or 1.5e-05 seconds, then
you are seeing the granularity of the linux system clock and your
have lots of measurement error.

I To get accurate, repeatable measurements, aim for 100–1000 or
more “OS clock” ticks.

If you have a total time of 1 or 2 seconds, you may be messing
with the frame refresh for a user on the console.

I Be a good citizen.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 3 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Occupancy

We want lots of threads running on each SM. How do we get this?
To keep every SM busy, the number of blocks should be greater
than the number of SMs.

I An SM can have 2048 threads, but a block can have at most 1024
threads.

I We want at least two blocks per SM. More is better.
Limits on occupancy

I At most 8 blocks per SM.
I 216 registers/SM. Use
nvcc -O3 -c --ptxas-options -v examples.cu

I 96Kbytes of shared memory per SM. At most 48Kbytes/block.
I Check out the occupancy calculator:

CUDA Occupancy calculator.xls

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 4 / 13

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Predicated Execution
What about if (or for)?
When a warp executes the if, all threads execute it?

I What if some threads take the then-branch and others take the
else-branch?

Predicated execution.
I Each thread keeps a bit saying whether it’s a then-thread or an

else-thread.
I The GPU fetches instructions from the then and else clauses, and

marks them as then-instructions or else-instructions
I The then-threads execute then-instructions and ignore

else-instructions.
F The else-instructions are still fetched and dispatched for the SPs that

need them.
F They are treated as NOPs by the SPs for then-threads, but they take

up excution time.
I Likewise, the else-threads execute else-instructoins and ignore

then-instructions.

Predication handles multiple levels of control flow nesting.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 5 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Thread Divergence and Performance

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 6 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Thread Divergence and syncthreads()

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 7 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Instruction Mix

We measure our program performance in terms of the critical,
unavoidable operations

I Typically “floating point operations” for matrix-multiplication or other
scientific computing applications.

I Often main memory accesses for sorting, or other data-intensive
applications.

But, the program does other operations as well
I This is where you see me counting instructions on my fingers

during lecture.
I Optimizing performance can involve minimizing this overhead:

F Good algorithm design.
F Memory access optimization.
F Loop unrolling

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 8 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Bigger Kernels

global myKernel(. . .) {
do something

}

Unless do something is big, kernel launch takes most of the time.
We can launch a big-grid

I If we have a huge number of array elements than each need a
small amount of work, this can be a good idea.

I BUT we’re likely to create a memory-bound problem.
Or, we can make each thread do many somethings.

global myKernel(int m, . . .) {
for(int i = 0; i < m; i++)

do something
}

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 9 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Loop Limitations

It takes two or three instructions per loop iteration to manage the
loop:

I One to update the loop index
I One or two to check the loop bounds and branch.
I If do something is only three or four instructions, then 40-50% of

the execution time is for loop management.
If each iteration of do something depends on the previous one

I Then the long latency of the SP pipelines can limit performance.
I Even if we have 48 warps running.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 10 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Loop Unrolling

Have each loop iteration perform multiple copies of the loop body
global myKernel(int m, . . .) {
for(int i = 0; i < m; i += 4) {

do something 1
do something 2
do something 3
do something 4

}
}

More “real work” for each time the loop management code is
executed.
Need to make sure that m is a multiple of four, or handle
end-cases separately.
Often, we need more registers.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 11 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Unrolling – the plots

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ex
ec

ut
io

n 
tim

e 
(n

or
m

al
iz

ed
)

1

1.5

2

2.5

3

3.5

4
execution time vs. unrolling depth

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

FL
O

PS
 (n

or
m

al
iz

ed
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
FLOPS vs. unrolling depth

This example is from 2015W2 HW3, Q1.

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 12 / 13

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/index.html
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/3/hw3.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018


Preview

November 23: CUDA Performance, Part 2
November 26: CUDA Performance/Examples
November 28: CUDA (and other) Examples
November 30: Review
Dec 3: Final Exam review session (to be scheduled)
Dec 4: Final Exam – 8:38am (ouch!)

Greenstreet CUDA: Performance Considerations CpSc 418 – Nov. 23, 2018 13 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_23
https://en.wikipedia.org/wiki/2018

