
CUDA: Memory

Mark Greenstreet

CpSc 418 – November 14, 2018

Architecture Snapshot
Registers
Shared Memory
Global Memory
Other Memory: texture memory, constant memory, caches
Summary, preview review

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 1 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


First, GPU Architecture Review

(high−end, "Pascal" generation)

GDDR

GDDR

G
D

D
R

G
D

D
R

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM
L2$

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SMSM

GTX 1080 Architecture

GPUs in the the
linXX.ugrad.cs.ubc.ca
machines

GeForce GTX 1060
9 SMs (10 on chip, 9
reported by the device):

I 128 SPs/SM.
I That’s 1152 SPs on the

chip.
I Each SM can schedule

4 warps in a single
cycle.

∼ 1.6GHz clock
frequency.
3 GBytes of GDDR5
memory,
∼ 192GBytes/sec. memory
bandwidth.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 2 / 24

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1060/specifications
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


A Streaming Multiprocessor (SM)

warp

F

I
registers

lots of
deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

shared
memory

shared
memory

shared
memory

I$
PC

D
E
C

ctrl

scheduler

inst inst

crossbar
switch

I omitted the connections from the pipelines to the
crossbar because the figure is already quite full.

Each of the pipelines is an SP (streaming processor)
Lots of deep pipelines.
Lots of threads: when we encounter an architectural challenge:

I Raising throughput is easy, lowering latency is hard.
I Solve problems by increasing latency and adding threads.
I Make the programmer deal with it.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 3 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Why do we need a memory hierarchy

global void saxpy(uint n, float a, float *x, float *y) {
uint myId = blockDim.x*blockIdx.x + threadIdx.x;
if(myId < n)

y[myId] = a*x[myId] + y[myId];
}

A GPU with 1152 SPs, and a 1.7GHz clock rate (see slide 2 can
perform over 3900 single-precision GFlops.

I With a main memory bandwidth of 192 GBytes/sec., and 4 bytes
per float, a CUDA kernel needs to perform 1152∗1.7∗2∗4

192 ≈ 82
floating point operations per memory read or write.

I Otherwise, memory bandwidth becomes the bottleneck.
Registers and shared memory let us use a value many times
without going to the off-chip, GDDR memory.

I But, we need to program carefully to make this work.

Is saxpy a good candidate for GPU execution?

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 4 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


CGMA – calculation details
CGMA: Compute-to-Global-Memory-Access ratio

I Compute: number of floating point operations
I Global memory access: number of 32-bit words read and/or written

to/from the GPU’s DRAM

The example from the previous slide:

CGMA =
1152SPs∗1.7×109 instructions

SP·sec ∗2 flops
instruction

192 bytes
sec ∗1 32−bitword

byte

≈ 82 flops
memoryaccess(32−bitword)

where
I 1152 SPs: GTX 1060 architecture details
I 1.7 × 109 instructions

SP·sec : GTX 1060 clock frequency
I 2 flops

instruction : fused multiply-add
I 192 bytes

sec : GTX 1060 off-chip memory bandwidth
I 1 32−bitword

byte : sizeof(float)

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 5 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Matrix Multiplication and Memory

for(int i = 0; i < M; i++)
for(int j = 0; j < N; j++)

for(int k = 0; k < L; k++)
c[i,j] += a[i,k]*b[k,j];

Focus on the innermost loop: for(k . . .)
I Why?

How many floating point operations per iteration?
How many memory reads?
How many memory writes?
What is the “Compute-to-Global-Memory-Access” ratio (CGMA)?

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 6 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Registers

block0

warp0 warp3

registerspipelines

warp2warp1

more blocks

ctrl

F

I
I$

PC
D
E
C

scheduler

inst

warp

inst

Each SP has its own register file.
The register file is partitioned between threads executing on the
SP.
Local variables are placed in registers.

I The compiler in-lines functions when it can
F A kernel with recursive functions or deeply nested calls can cause

register spills to main memory – this is slow.
I Local array variables are mapped to global memory – watch out.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 7 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


More Registers

block0

warp0 warp3

registerspipelines

warp2warp1

more blocks

ctrl

F

I
I$

PC
D
E
C

scheduler

inst

warp

inst

In recent versions of CUDA, threads in the same warp can swap
registers.

I Provides very efficient intra-warp communication.
I For example: to implement the various strides of for

compare-and-swap in bitonic sort.
Performance trade-offs

I A thread can avoid slow, global memory accesses by keeping data
in registers.

I But, using too many registers reduces the number of threads that
can run at the same time.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 8 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Registers and Memory Bandwidth

The GPU on slide 2 has 9 SMs, each with 128 SPs.
Each SP has access to a register file.
I’ll guess two register reads and one write per clock cycle, per SP.
I’ll assume 4-byte registers.
We get

9SM∗128
SP
SM

∗3
RW

SP ∗ cycle
∗1.7×109 cycle

sec.
∗4

Byte
RW

≈ 23500
GByte

sec.

122 times faster than main memory bandwidth!

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 9 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Registers and Thread Scheduling

block0

warp0 warp3

registerspipelines

warp2warp1

more blocks

ctrl

F

I
I$

PC
D
E
C

scheduler

inst

warp

inst

Each SM has a 256Kbyte register file, and 64 active warps, with
32 threads/warp.

I That’s 32 4-byte registers per thread.
If a thread uses more registers

I The SM cannot fully use its warp scheduler, or
I Registers will spill to main memory – slow

The numbers are smaller for older GPUs.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 10 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Registers and Matrix Multiply

Matrix multiplication can be broken into blocks.
We can load blocks of A and B into registers and compute the
result block for C.

I E.g. if we load 2 × 2 blocks of A, B into registers, we can compute
(part of) a 2 × 2 block of C.

I This involves 8 loads, 4 stores, 8 multiplies, and 4 adds.
I CGMA = 1. Better than the brute-force algorithm, but we need to

take this idea further.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 11 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Shared Memory

pipeline

pipelineI
addr

data

addr

data

shared

memory

addr

data

addr

data

shared

memory

I$
PC

D
E

scheduler

inst

warp

inst ctrl

crossbar

CF

On-chip, one bank per SP.
Banks are interleaved by:

I Early CUDA GPUs: 4-byte word
I Later GPUs: programmer configurable 4-byte or 8-byte words
I Why?

Shared memory is a limited resource: 48KBytes to 96Kbytes/SM.
I Each SM has more registers than shared-memory.
I Shared memory demands limit how many blocks can execute

concurrently on a SM.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 12 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Shared Memory Example: Matrix Multiply

Running example from the textbook: C = A B
Each thread-block loads a 16 × 16 block from A and B.

I The threads to these loads “cooperatively”:
I Read AI,K and BK ,J from global memory with “coalesced” loads.
I Write these blocks to shared-memory in a way that avoids bank

conflicts.
Compute: CI,J += AI,K BK ,J .

I This takes 163 = 4096 fused multiply-adds.
I Loading AI,K fetches 162 = 256 floats from global memory.
I Likewise for BK ,J . Total of 512 floats fetched.
I CGMA = 2 ∗ 4096/512 = 16.

Note: the L2 cache may help here: A and B are read-only.
I Need to try more experiments.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 13 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Matrix Multiply: Notes

CGMA of 16 is much better, but still not the 82 that we need.
Many graphics and machine learning applications work with
low-precision arithmetic.

I Use 16-bit floating point numbers.
I Can load twice as many float16’s per second.
I Can do twice as many float16 operations.
I Can hold more in shared memory. We’ve improved CGMA some.

Tune the algorithm: the blocks we use for A and B don’t have to be
square.
nVidia GPUs seem to be designed to the point that matrix
multiplication balances floating point throughput with memory
bandwidth for a carefully optimized implementation.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 14 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Shared Memory: Collisions

pipeline

pipelineI
addr

data

addr

data

shared

memory

addr

data

addr

data

shared

memory

I$
PC

D
E

scheduler

inst

warp

inst ctrl

crossbar

CF

When one thread in a warp accesses shared memory, all active threads in
the warp access shared memory.
If each thread accesses a different bank, then all accesses are performed
in a single cycle.

I Otherwise, the load or store can take multiple cycles.
I Multiple accesses to the same bank are called collisions.
I The worst-case occurs when all threads access different locations in

the same bank.
The programmer needs to think about the index calculations to avoid
collisions.

I When programming GPUs, the programmer needs to think about index
calculations a lot.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 15 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Global Memory

Off-chip DRAM
I GDDR supports higher-bandwidth than than regular DDR.
I A GPU can have multiple memory interfaces.
I Total bandwidth 80 to 484+ GBytes/sec

Memory accesses can be a big bottleneck.
I CGMA: compute to global memory access ratio

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 16 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Now for a word about DRAM

The memory that you plug into your computer is mounted on DIMMs
(dual-inline memory modules).

A DIMM typically has 16 or 18 chips

E.g. each chip of an 8Gbyte DIMM holds 512MBytes = 4Gbits.

Each chip consists of many “tiles”,

I a typical chip has 1Mbit/tile
I that’s 4096 tiles for a 4Gbit chip.

Each tile is an array of capacitors.

I each capacitor holds 1 bit.
I a typical tile could have 1024 rows and 1024 columns.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 17 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Writing and reading DRAM
Writing: easy

I drive all 1024 column-lines to the values you want to write.
I open up all the valves for one row.
I the drinking cups for each column in that row get filled or emptied.
I note: you end up writing every column in the row; so writes are often

preceded by reads.
Reading: hard

I drive all 1024 column-lines to “half-way”, and let them “float”.
I open up all the valves for one row.
I if the level in the pipe goes up a tiny amount, that cup held a 1.
I if the level in the pipe goes down a tiny amount, that cup held a 0.
I it’s a delicate measurement – it takes time to set it up.
I This is why DRAM is slow.

But: we just read 1024 bits, from each chip of the DIMM.
I That’s 16Kbits = 2Kbytes total.
I Conclusion: DRAM has awful latency, but we can get very good bandwidth.

F The bandwidth bottleneck is the wires from the DIMM to the CPU or GPU.
F But I’m pretty sure that Ian won’t let me give a lecture on transmission lines,

phase-locked loops, equalizers, and all the other cool stuff in the DDR (or
GDDR) interface.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 18 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


GPUs meet DRAM
DRAM summary: terrible latency (60-200ns or more), fairly high
bandwidth.
The GPU lets the program take advantage of high bandwidth.

I If the 32 loads from a warp access 32 consecutive memory
location,

F The GPU does one GDDR access,
F and it transfers a large block of data.

I The same optimization is applied to stores, and to loads from the
on-chip caches.

In CUDA-speak, if the loads from a warp access consecutive
locations, we say that the memory accesses are coalesced.
It’s a big deal to make sure that your memory accesses are
coalesced.

I Note that the memory optimizations are exposed to the
programmer.

I You can get the performance by considering the memory model.
I But, it’s not automatic.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 19 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Example: Matrix Multiplication

In C, matrices are usually stored in row-major order.
I A[i,k] and A[i,k+1] are at adjacent locations, but
I B[k,j] and B[k+1,j] are N words apart (for N × N matrices).

For matrix multiplication, accesses to A are naturally coalesced,
but accesses to B.
The optimized code loads a block of B into shared memory.

I This allows accesses to be coalesced.
I But we need to be careful about how we store the data in the

shared memory to avoid bank conflicts.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 20 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Other Memory

Constant memory: cached, read-only access of global memory.
Texture memory: global memory with special access operations.
L1 and L2 caches: only for memory reads.

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 21 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Summary
GPUs can have thousands of execution units, but only a few
off-chip memory interfaces.

I This means that the GPU can perform 10-50 floating point
operations for every memory read or write.

I Arithmetic operations are very cheap compared with memory
operations

To mitigate the off-chip memory bottleneck
I GPUs have, limited on-chip memory
I Registers and the per-block, shared-memory will be our main

concerns in this class.
Moving data between different kinds of storage is the
programmer’s responsibility.

I The programmer explicitly declares variables to be stored in shared
memory.

I The programmer needs to be aware of the per-thread register
usage to achieve good SM utilization.

I The only way to communicate between thread blocks is to write to
global memory, end the kernel, and start a new kernel (ouch!)

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 22 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Preview

November 16: GPU Mamory: Part 2
November 19: GPU Performance: Part 1

Reading: Kirk & Hwu – Chapter 5
November 21: GPU Performance: Part 2
November 23: GPU Performance: Part 3

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 23 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018


Review
What is CGMA?
On slide 13 we computed the CGMA for matrix-multiplication
using 16 × 16 blocks of the A, B, and C matrices.

I How many such thread-blocks can execute concurrently on an SM
with 48KBytes of memory?

I How does the CGMA change if we use 32 × 32 blocks?
I If we use the larger matrix-blocks, how many thread blocks can

execute concurrently on an SM with 48Kbytes of memory?
I If we use the larger matrix-blocks, how many thread blocks can

execute concurrently on an SM with 96Kbytes of memory?

What are bank conflicts?
How can increasing the number of registers used by a thread
improve performance?
How can increasing the number of registers used by a thread
degrade performance?
What is a “coalesced memory access”?

Greenstreet CUDA: Memory CpSc 418 – Nov. 14, 2018 24 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_14
https://en.wikipedia.org/wiki/2018

