CUDA Threads

Mark Greenstreet

CpSc 418 — November 9, 2018

@ saxpy: hello-world for GPUs

@ Threads organization: grids, blocks, threads, and warps.

@ Synchronization
@ Examples

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 1/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Example: saxpy

@ saxpy = “single-precision a times x plus y”.
@ The device code.

@ The host code.

@ The running saxpy

Greenstreet CUDA Threads

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy. device code

__global_. void saxpy (uint n, float a, float xx, float xy) {

uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if (i < n)
y[i] = a»x[i] + y[i];

@ Each thread has x, y, and z indices.
» We'll just use x for this simple example.
@ Note that we are creating one thread per vector element:

» Exploits GPU hardware support for multithreading.

» We need to keep in mind that there are a large, but limited number
of threads available.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 3/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argvi[l]);
float *x, =*y, *yy;
float xdev.x, =xdev.y;

int size = nxsizeof (float);
x = (float *)malloc(size);
y = (float x)malloc(size);
vy = (float x)malloc(size);
for(int i = 0; 1 < n; i++) {
x[1i] i;
yl[i] = ixi;

@ Declare variables for the arrays on the host and device.
@ Allocate and initialize values in the host array.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 4/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 2 of 5)

int main (void) {

(void**) (&dev_x), size);
(voidx*«*) (&dev.y), size);
dev._x, x, size, cudaMemcpyHostToDevice);
dev.y, y, size, cudaMemcpyHostToDevice);

cudaMalloc
cudaMalloc
cudaMemcpy
cudaMemcpy

@ Allocate arrays on the device.
@ Copy data from host to device.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 5/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 3 of 5)

int main (void) {

float a = 3.0;
saxpy<<<ceil (n/256.0),256>>>(n, a, dev.x, dev.y);
cudaMemcpy (yy, dev.y, size, cudaMemcpyDeviceToHost);

@ Invoke the code on the GPU:
> saxpy<<<ceil (n/256.0),256>>>(...) says to create
[n/256] blocks of threads.
» Each block consists of 256 threads.
» See slide 10 for an explanation of threads and blocks.
» The pointers to the arrays (in device memory) and the values of n
and a are passed to the threads.

@ Copy the result back to the host.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 6/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 4 of 5)

for(int i = 0; 1 < n; i++) { // check the result
if(yy[il != a*x[i] + y[i]) {
fprintf (stderr,
"ERROR: 1=%d, al[i]l=
i, al[i], b[i], c[i]

’
exit (-1);
}
}
printf ("The results match!\n");
}

@ Check the results.

Greenstreet CUDA Threads

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 5 of 5)

int main(void) {
free (x);
free(y);
free(yy);
cudaFree (dev_x) ;

cudaFree (dev.y) ;
exit (0);

@ Clean up.
@ We're done.

Greenstreet CUDA Threads

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Launching Kernels

@ Terminology

» Data parallel code that runs on the GPU is called a kernel.
» Invoking a GPU kernel is called launching the kernel.

@ How to launch a kernel

» The host CPUS invokes a __global__ function.
» The invocation needs to specify how many threads to create.
» Example:

* saxpy<<<ceil (n/256.0),256>>>(...)

* creates [| blocks

256
* with 256 threads each.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 9/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Threads and Blocks

@ The GPU hardware combines threads into warps
» Warps are an aspect of the hardware.
All of the threads of warp execute together — this is the SIMD part.
The functionality of a program doesn’t depend on the warp details.
But understanding warps is critical for getting good performance.
@ Each warp has a “next instruction” pending execution.
» If the dependencies for the next instruction are resolved, it can
execute for all threads of the warp.
» The hardware in each streaming multiprocessor dispatches an
instruction each clock cycle if a ready instruction is available.
» The GPUs inthe 1in??.ugrad.cs.ubc.ca machines support 48
such warps of 32 threads each in a “thread block.”

@ What if our application needs more threads?

» Threads are grouped into “thread blocks”.
» Each thread block has up to 1024 threads (the HW limit).

v vy

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 10/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Compiling and running

1in25$ nvcc saxpy.cu -0 saxpy
1in25$% ./saxpy 1000
The results match!

Greenstreet CUDA Threads

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

But is it fast?

@ For the saxpy example as written here, not really.
» Execution time dominated by the memory copies.
@ But, it shows the main pieces of a CUDA program.
@ To get good performance:
» We need to perform many operations for each value copied
between memories.
» We need to perform many operations in the GPU for each access to
global memory.

» We need enough threads to keep the GPU cores busy.
» We need to watch out for thread divergence:

* If different threads execute different paths on an if-then-else,
* Then the else-threads stall while the then-threads execute, and
vice-versa.

» And many other constraints.
@ GPUs are great if your problem matches the architecture.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 12/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Thread organization: grids, blocks and threads

@ Lots of nVidia jargon here.

» When a kernel is launched, it creates an array of threads.
» This array is called a grid.

@ A grid is organized as an array of blocks
@ Each block is an array of threads

@ Why so many details?
» A block must have all execution resources it needs before it is
launched:
* A block runs on a single SM.
* The execution model suggests that blocks run to completion (i.e. they
are not swapped-out during execution).
» Switching between threads in a block is done by hardware.
» By distinguishing blocks from threads, the CUDA model exposes
the performance issues to the programmer.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 13/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

A grid is an array of blocks

(0,0)

(1,0)

(2,0)

(3,0

(4,0)

(5.0)

0,1)

(1.1)

2.0

(3.1

(4.1)

(GNY)

0.,2)

(1,2)

2.2

(3.2)

(4.2)

(5.2

(0.3)

(1,3)

(2.3)

(3.3)

(4.3)

(5.3)

A grid

@ Blocks are scheduled by the GPU software.

@ Blocks can be arranged as a 1D, 2D, or 3D array.
@ There can be lots of blocks:

» There can be up to 23! = 2,147,483, 648 blocks in the x-dimension.
» There can be up to 2'® = 65536 blocks in the y- and z-dimensions.

Greenstreet CUDA Threads

CpSc 418 — Nov. 9, 2018 14/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Each block is an array of threads

Blocks Threads

(5.0)
0,0) | (1,0) | 2,0) | (3.0) | (4,0 \ 000 [(100 | 200
O, (L) |2, | GDH | @D]| G.D (0.1.0)] (1.1,0) | 2.1,0)

02| (1,2) | (22) | (3.2) | 4,2) | (5,2) 0201020220

(0,3,0) [(1,3,0) | (2,3,0)
0,3) [(1,3) | (2,3) | (3,3) | (4,3) | (5.3) 04.0)| (1.2.0)| 2.40)

Where do they put all those threads?

@ Threads are scheduled by the GPU hardware.

@ Threads can be arranged as a 1D, 2D, or 3D array.
@ There are a limited number of threads per block:

» The total number of threads (product of all dimensions) is at most
256 to 1024, depending on the GPU.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 15/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Threads and blocks: launching a kernel

@ Let’'s say we have:
_global__ void kernel_fun (args)

@ To launch this kernel, we execute a statement like:

kernel_fun<<<dim@Grid, dimBlock>>> (actuals) ;
where
» dimGrid is specifies the dimension(s) of the grid (an array of
blocks):
* dimGrid can be an int, in which case the array is one dimensional of
that size.
* or, dimGrid can be a dim3, for example:
dim3(6,4,1)
* The last component of the dim3 is the z-dimension, which is ignored
when describing a grid. To avoid confusion, the standard practice it to
use a value of 1.
» dimBlock is specifies the dimension(s) of each block (an array of
threads):
* dimGrid can be an int or a dim3.
* |If dimGridis a dim3, all three dimensions are used.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 16/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Threads and blocks: within a kernel

@ With a kernel, CUDA-C provides four variables to determine the
position of a thread within the grid: blockDim, blockIdx,
threadDim, and threadIdx.

@ blockDim.x and blockDim.y give the size of the grid in the x-
and y-dimensions.

@ threadDim.x, threadDim.y, and threadDim. z give the size
of each block.

@ blockIdx.x and blockIdx.y give the indices of the thread’s
block within the grid. Note that:

» 0 <DblockIdx.x < BlockDim.x,and
» 0 <blockIdx.y < BlockDim.y.

@ Likewise, threadIdx.x, threadIdx.y, and threadIdx.z give
the indices of the thread within its block.

@ Because the size of blocks are limited, it is common to use code
such as:

uint my-idx = blockDim.xxblockIdx.x + threadIdx.x;
to combine the block and thread indices into a single index.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 17/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Bounds checking: launching kernels

@ Consider executing kernel_fun on an array of n elements.
@ Because n might be large, we’'ll use n/256 blocks of 256 threads.
» THINK: what if n is not a multiple of 2567
» We’'ll round up to make sure we have enough threads.
@ The kernel launch looks like:
kernel_fun<<<ceil (n/256.0), 256>>>(n, myArray);

» Why divide by 256. 0 instead of 2567
» Why use ceil?

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 18/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Bounds checking: in the kernel

@ The kernel launch looks like:
kernel_fun<<<ceil (n/256.0), 256>>>(n, myArray);
@ THINK: what if n is not a multiple of 2567

» We’'ll launch more than n threads?

» For example, if n==1000, then we’ll launch 4 blocks of 256 threads.
A total of 1024 threads.

» What will the last 24 threads do?

@ Add a test:

uint my-idx = blockDim.xxblockIdx.x + threadIdx.x;
if (my-idx < n) {

.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 19/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Warps
@ Warps refer to how the hardware executes threads.
» The programmer writes code with grid consisting of blocks of
threads.
» You can write correct code without paying attention to warps.
» But you need to think about warps to write fast code.
@ Each streaming multiprocessor (SM) in the GPU executes threads
in SIMD fashion.
» A warp is a collection of threads that execute together on the same
SM.
@ Why we care:
» It helps performance to make the number of threads in a block a
multiple of the warp size.
» Thread divergence is an issue when different threads in the same
warp follow different control paths.
@ Etymology: “warp” is a term from weaving:

“the threads on a loom over and under which other
threads (the weft) are passed to make cloth”

From the New Oxford American Dictionary (on my laptop).

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 20/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

A Warped Example: Reduce (part 1 of 2)

@ Consider a reduce of an array, data, of n elements using n/2

threads. Assume n is power of 2.
@ Simple code:
for (int stride = 1; stride < n; stride += stride) {
if ((my-idx & (stride-1)) == 0)
data[2+my_idx] += data[2+my_-idx + stride];
__syncthreads (); % seeslide 24

I3
@ Considern == 16
» Firstiteration, for 1in0,...,7,data[2x1i] += data[2%i]+1.
Now, all the even indexed elements have their sum with their odd
counterpart.

» Second iteration, for 1 in 0, 2, 4, 6, data[2xi] += datal[2%i]+2.
All elements with indices that are multiples of four, have their sum with the
next three elements.

» Third iteration leads with data[0] and data[8] holding sums for their
halves of the array.

» The fourth iteration puts the complete sum into data[0].

@ What if n==10247 See the next slide.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 21/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

A Warped Example: Reduce (part 2 of 2)

@ What if n==10247

» We have 512 threads: 16 warps of 32 threads.

» In the first iteration, all threads are active.

» In the next iteration, each warp has 16 active threads — the GPU
has to execute the code for all 16 warps, even though half the
threads do nothing.

» In subsequent iterations, the warps are more and more poorly
utilized.

@ We would like to pack the busy threads into the minumum number
of warps.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 22/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Faster Warps

for (int stride = n/2; stride > 0; stride >>= 1) {
if (my_idx < stride)
data[my_idx] += data[my_idx] + stride;
__syncthreads () ;

}

@ Considern == 1024.

@ In the first iteration, there are 16 active warps — all threads in each
warp are busy.

@ In the second iteration, there are 8 active warps — all threads in
each active warp are busy.

@ Similarly, for the 3 through 5™ iterations:

» The number of active warps decreases.
» All threads in each active warp are busy.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 23/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Synchronization

@ The reduce example used __syncthreads () : all the threads in
the block must execute this statement before any continue beyond
it.

» Be very careful about thread divergence.
» All threads in the block must meet at the barrier.
» They must all meet at the same barrier.

@ We’ll have more examples of synchronization next week.

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 24/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Some examples

See examples.cu.

Greenstreet CUDA Threads

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/examples.cu
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Preview

November 14: GPU Mamory: Part 1
Reading: Kirk & Hwu — Chapter 4
November 16: GPU Mamory: Part 2
November 19: GPU Performance: Part 1
Reading: Kirk & Hwu — Chapter 5
November 21: GPU Performance: Part 2
November 23: GPU Performance: Part 3

@ Kirk & Hwu = Programming Massively Parallel Computers

@ On-line here — where “here” means
https://www.sciencedirect.com/book/9780128119860/
programming-massively-parallel-processors

@ Free access from UBC (use the UBC library ezproxy from
off-campus).

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 26/27

https://www.sciencedirect.com/book/9780128119860/programming-massively-parallel-processors
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Review

@ In CUDA, what is a grid, a block, and thread?

@ Why does CUDA allow millions of thread blocks but only 256 to
1024 threads per block?

@ How does a programmer specify the number of thread blocks and
number of threads when launching a CUDA kernel?

@ How does a thread determine its position within the thread grid?
“global memory” in CUDA programming.

@ Why do threads need to check their indices against array bounds?
@ What is a warp? Why does it matter?

Greenstreet CUDA Threads CpSc 418 — Nov. 9, 2018 27/27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

