
CUDA Threads

Mark Greenstreet

CpSc 418 – November 9, 2018

saxpy: hello-world for GPUs
Threads organization: grids, blocks, threads, and warps.
Synchronization
Examples

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 1 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Example: saxpy

saxpy = “single-precision a times x plus y”.
The device code.
The host code.
The running saxpy

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 2 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x, y, and z indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 3 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 4 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 5 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I saxpy<<<ceil(n/256.0),256>>>(...) says to create
dn/256e blocks of threads.

I Each block consists of 256 threads.
I See slide 10 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 6 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + y[i]) {

fprintf(stderr,
"ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 7 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 8 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Launching Kernels

Terminology
I Data parallel code that runs on the GPU is called a kernel.
I Invoking a GPU kernel is called launching the kernel.

How to launch a kernel
I The host CPUS invokes a global function.
I The invocation needs to specify how many threads to create.
I Example:

F saxpy<<<ceil(n/256.0),256>>>(...)
F creates

⌈
n

256

⌉
blocks

F with 256 threads each.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 9 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Threads and Blocks

The GPU hardware combines threads into warps
I Warps are an aspect of the hardware.
I All of the threads of warp execute together – this is the SIMD part.
I The functionality of a program doesn’t depend on the warp details.
I But understanding warps is critical for getting good performance.

Each warp has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, it can

execute for all threads of the warp.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPUs in the lin??.ugrad.cs.ubc.ca machines support 48

such warps of 32 threads each in a “thread block.”
What if our application needs more threads?

I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 10 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Compiling and running

lin25$ nvcc saxpy.cu -o saxpy
lin25$./saxpy 1000
The results match!

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 11 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

But is it fast?

For the saxpy example as written here, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 12 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Thread organization: grids, blocks and threads

Lots of nVidia jargon here.
I When a kernel is launched, it creates an array of threads.
I This array is called a grid.

A grid is organized as an array of blocks
Each block is an array of threads
Why so many details?

I A block must have all execution resources it needs before it is
launched:

F A block runs on a single SM.
F The execution model suggests that blocks run to completion (i.e. they

are not swapped-out during execution).
I Switching between threads in a block is done by hardware.
I By distinguishing blocks from threads, the CUDA model exposes

the performance issues to the programmer.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 13 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

A grid is an array of blocks

(1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0)

A grid

Blocks are scheduled by the GPU software.
Blocks can be arranged as a 1D, 2D, or 3D array.
There can be lots of blocks:

I There can be up to 231 = 2,147,483,648 blocks in the x-dimension.
I There can be up to 216 = 65536 blocks in the y- and z-dimensions.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 14 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Each block is an array of threads

(3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(0,4,0)

(1,0,0)

(1,1,0)

(1,2,0)

(1,3,0)

(1,4,0)

(2,0,0)

(2,1,0)

(2,2,0)

(2,3,0)

(2,4,0)

(0,0) (1,0) (2,0) (3,0) (4,0)
(5,0)

Blocks

(0,1)

Threads

(1,1) (2,1)

Where do they put all those threads?

Threads are scheduled by the GPU hardware.
Threads can be arranged as a 1D, 2D, or 3D array.
There are a limited number of threads per block:

I The total number of threads (product of all dimensions) is at most
256 to 1024, depending on the GPU.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 15 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Threads and blocks: launching a kernel
Let’s say we have:

global void kernel fun(args)

To launch this kernel, we execute a statement like:
kernel fun<<<dimGrid, dimBlock>>>(actuals);

where
I dimGrid is specifies the dimension(s) of the grid (an array of

blocks):
F dimGrid can be an int, in which case the array is one dimensional of

that size.
F or, dimGrid can be a dim3, for example:

dim3(6,4,1)
F The last component of the dim3 is the z-dimension, which is ignored

when describing a grid. To avoid confusion, the standard practice it to
use a value of 1.

I dimBlock is specifies the dimension(s) of each block (an array of
threads):

F dimGrid can be an int or a dim3.
F If dimGrid is a dim3, all three dimensions are used.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 16 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Threads and blocks: within a kernel
With a kernel, CUDA-C provides four variables to determine the
position of a thread within the grid: blockDim, blockIdx,
threadDim, and threadIdx.
blockDim.x and blockDim.y give the size of the grid in the x-
and y-dimensions.
threadDim.x, threadDim.y, and threadDim.z give the size
of each block.
blockIdx.x and blockIdx.y give the indices of the thread’s
block within the grid. Note that:

I 0 ≤ blockIdx.x < BlockDim.x, and
I 0 ≤ blockIdx.y < BlockDim.y.

Likewise, threadIdx.x, threadIdx.y, and threadIdx.z give
the indices of the thread within its block.
Because the size of blocks are limited, it is common to use code
such as:

uint my idx = blockDim.x*blockIdx.x + threadIdx.x;

to combine the block and thread indices into a single index.
Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 17 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Bounds checking: launching kernels

Consider executing kernel fun on an array of n elements.
Because n might be large, we’ll use n/256 blocks of 256 threads.

I THINK: what if n is not a multiple of 256?
I We’ll round up to make sure we have enough threads.

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

I Why divide by 256.0 instead of 256?
I Why use ceil?

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 18 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Bounds checking: in the kernel

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

THINK: what if n is not a multiple of 256?
I We’ll launch more than n threads?
I For example, if n==1000, then we’ll launch 4 blocks of 256 threads.

A total of 1024 threads.
I What will the last 24 threads do?

Add a test:
uint my idx = blockDim.x*blockIdx.x + threadIdx.x;
if(my idx < n) {
...

}

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 19 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Warps
Warps refer to how the hardware executes threads.

I The programmer writes code with grid consisting of blocks of
threads.

I You can write correct code without paying attention to warps.
I But you need to think about warps to write fast code.

Each streaming multiprocessor (SM) in the GPU executes threads
in SIMD fashion.

I A warp is a collection of threads that execute together on the same
SM.

Why we care:
I It helps performance to make the number of threads in a block a

multiple of the warp size.
I Thread divergence is an issue when different threads in the same

warp follow different control paths.
Etymology: “warp” is a term from weaving:

“the threads on a loom over and under which other
threads (the weft) are passed to make cloth”

From the New Oxford American Dictionary (on my laptop).
Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 20 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

A Warped Example: Reduce (part 1 of 2)
Consider a reduce of an array, data, of n elements using n/2
threads. Assume n is power of 2.
Simple code:
for(int stride = 1; stride < n; stride += stride) {

if((my idx & (stride-1)) == 0)
data[2*my idx] += data[2*my idx + stride];
syncthreads(); % see slide 24

}
Consider n == 16

I First iteration, for i in 0, . . . , 7, data[2*i] += data[2*i]+1.
Now, all the even indexed elements have their sum with their odd
counterpart.

I Second iteration, for i in 0, 2, 4, 6, data[2*i] += data[2*i]+2.
All elements with indices that are multiples of four, have their sum with the
next three elements.

I Third iteration leads with data[0] and data[8] holding sums for their
halves of the array.

I The fourth iteration puts the complete sum into data[0].

What if n==1024? See the next slide.
Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 21 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

A Warped Example: Reduce (part 2 of 2)

What if n==1024?
I We have 512 threads: 16 warps of 32 threads.
I In the first iteration, all threads are active.
I In the next iteration, each warp has 16 active threads – the GPU

has to execute the code for all 16 warps, even though half the
threads do nothing.

I In subsequent iterations, the warps are more and more poorly
utilized.

We would like to pack the busy threads into the minumum number
of warps.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 22 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Faster Warps

for(int stride = n/2; stride > 0; stride >>= 1) {
if(my idx < stride)

data[my idx] += data[my idx] + stride;
syncthreads();

}

Consider n == 1024.
In the first iteration, there are 16 active warps – all threads in each
warp are busy.
In the second iteration, there are 8 active warps – all threads in
each active warp are busy.
Similarly, for the 3rd through 5th iterations:

I The number of active warps decreases.
I All threads in each active warp are busy.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 23 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Synchronization

The reduce example used syncthreads(): all the threads in
the block must execute this statement before any continue beyond
it.

I Be very careful about thread divergence.
I All threads in the block must meet at the barrier.
I They must all meet at the same barrier.

We’ll have more examples of synchronization next week.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 24 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Some examples

See examples.cu.

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 25 / 27

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/examples.cu
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Preview

November 14: GPU Mamory: Part 1
Reading: Kirk & Hwu – Chapter 4

November 16: GPU Mamory: Part 2
November 19: GPU Performance: Part 1

Reading: Kirk & Hwu – Chapter 5
November 21: GPU Performance: Part 2
November 23: GPU Performance: Part 3

Kirk & Hwu = Programming Massively Parallel Computers
On-line here – where “here” means
https://www.sciencedirect.com/book/9780128119860/
programming-massively-parallel-processors

Free access from UBC (use the UBC library ezproxy from
off-campus).

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 26 / 27

https://www.sciencedirect.com/book/9780128119860/programming-massively-parallel-processors
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

Review

In CUDA, what is a grid, a block, and thread?
Why does CUDA allow millions of thread blocks but only 256 to
1024 threads per block?
How does a programmer specify the number of thread blocks and
number of threads when launching a CUDA kernel?
How does a thread determine its position within the thread grid?
“global memory” in CUDA programming.
Why do threads need to check their indices against array bounds?
What is a warp? Why does it matter?

Greenstreet CUDA Threads CpSc 418 – Nov. 9, 2018 27 / 27

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_9
https://en.wikipedia.org/wiki/2018

