Location, Location, Location

CPSC 418 November 5

Re-visiting some assumptions

- Processor centric view of computing concentrating on processors (why?)
- Stateful processors tightly coupled to memory, no first class communication
- □ Sharing and statistical multiplexing
- □ Parallel processing, just in time, not fastest
- □ Applications not algorithms
- □ Forever computing, streams not datasets
- □ Real-world computing
- □ Just in time and just in place computing

Why "where" is important

Even a little imbalance in work can cause serious loss of efficiency and to do better we need to "share" the work. (Amdahl's law)

Why "where" is important

Even a little imbalance in work can cause serious loss of efficiency and to do better we need to "share" the work.

Suppose we have 5 painters each painting 5 rooms but one of the rooms is twice the size.

What does Amdahl's model tell us?

$$S(p) = \frac{1}{\frac{1}{\frac{1}{6} + \left(1 - \frac{1}{6}\right)/5}} = \frac{1}{\frac{1}{6} + \frac{1}{6}} = 3$$

Efficient is only 60% and in general, assuming one processor does twice as much work, as p increases the efficiency goes to 50%

Another way to balance --pipelined

Problem divided into a series of tasks that have to be completed one after the other (the basis of sequential programming). Each task executed by a separate process or processor.

Example

Unix pipes: cat file | sort | uniq > unique.out

As fast as the slowest part.

Achieves something else, communication from one end of the pipe to the other.

Position data for later processing!

Frequency Example

Frequency filter - Objective to remove specific frequencies (f0, f1, f2,f3, etc.) from a digitized signal, f(t). Signal enters pipeline from left:

New strategies for load-balancing

If the number of stages is larger than the number of processors in any pipeline, a group of stages can be assigned to each processor:

Simple Systolic Computation

□ Simple Algorithms – tend to be fine-grain

□ Capture both (data in motion)

- o Data parallel
- Functional decomposition (pipelining)

Computation and Communication Temporal Spatial

THE UNIVERSITY OF BRITISH COLUMBIA

JBC

Inside the cell

How about output?

□ Method 1

- □ Method 2
- □ Method 3

□ Method 4

How about the bit level?

Binary tree comparator

Overall Implementation

Finding the smallest-initial

Finding the smallest-step 3

Finding the smallest-step 5

1

Step 6

Step 7

Step 8

Systolic Program

else if ($c_i == R$)

 $C_i = \{\phi, =, \mathbf{R}, \mathbf{L}\}$ $b_i = \{\phi, 0, \mathbf{1}\}$

else if $(c_i == L)$

 $a_i = \{0, \mathbf{1}\}$

else if ($b_i == NULL \&\& a_i NOT == NULL$)

Convolution

Convolution

The convolution of two vectors:

$$\langle a_N, a_{N-1}, \dots, a_1 \rangle \quad \langle b_N, b_{N-1}, \dots, b_1 \rangle$$

is the vector of length 2N-1, $\langle y_{2N-1}, y_{2N-2}, \dots, y_1 \rangle$

where
$$y_k = \sum_{i+j=k+1} a_i b_j \qquad i \le k \le 2N-1$$

Convolution on a linear array?

Convolution on a linear array?

k = 5 k = 6

Scheduling of inputs

UBC

What about the carries? $(1,0) \bullet (1,0) \bullet (1,0)$ 1 **1** 0 $(1,0) \bullet (1,0) \bullet (1,0)$ 1 0 (1, 0)• (1,0) • (1,0) 0 1 1 Ω (1,0) $(1,0) \bullet (1,0)$ 0 0 1 -> 0 1

1

What about the carries?

What about the carries?

Making it more efficient?

Matrix – Vector product

. .

$$A \bullet x = B \qquad b_i = \sum_{j=1}^N a_{ij} x_j$$
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{22} & a_{33} \end{bmatrix} \begin{bmatrix} z \\ x_3 \end{bmatrix} \begin{bmatrix} z \\ b_3 \end{bmatrix}$$

Scheduling

Example

						a_{44}
					a ₃₄	a ₄₃
				a ₂₄	a ₃₃	a ₄₂
			a ₁₄	a ₂₃	a ₃₂	a ₄₁
			a ₁₃	a ₂₂	a ₃₁	
			a ₁₂	a ₂₁		
			a ₁₁			
\mathbf{X}_4	X 3	X ₂	x ₁			

Example

 \mathbf{X}_4

Matrix Multiplication

FOF BRITISH COLOMBIA

Matrix Multiplication

CPSC418 - Wagner

Cannon's Matrix Multiplication

Cannon's Matrix Multiplication Algorithm

		-	•
A(0,0) A(0,1) A(0,2)	A(0,0) A(0,1) A(0,2)	A(0,1) A(0,2) A(0,0)	A(0,2) A(0,0) A(0,1)
A(1,0) A(1,1) A(1,2)	A(1,1) A(1,2) A(1,0)	A(1,2) A(1,0) A(1,1)	A(1,0) A(1,1) A(1,2)
A(2,0) A(2,1) A(2,2)	A(2,2) A(2,0) A(2,1)	A(2,0) A(2,1) A(2,2)	A(2,1) A(2,2) A(2,0)
«			
B(0,0) B(0,1) B(0,2)	B(0,0) B(1,1) B(2,2)	B(1,0) B(2,1) B(0,2)	B(2,0) B(0,1) B(1,2)
B(1,0) B(1,1) B(1,2)	B(1,0) B(2,1) B(0,2)	B(2,0) B(0,1) B(1,2)	B(0,0) B(1,1) B(2,2)
B(2,0) B(2,1) B(2,2)	B(2,0) B(0,1) B(1,2)	B(0,0) B(1,1) B(2,2)	B(1,0) B(2,1) B(0,2)
Initial A, B	A, B after skewing	A, B after shift k=1	A, B after shift k=

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

THE UNIVERSITY OF BRITISH COLUMBIA

Initial Step to Skew Matrices in Cannon

□ Initial blocked input

A(0,0) A(0,1]	A(0,2)
A(1,0]	A(1,1)	A(1,2)
A(2,0	A(2,1)	A(2,2)

THE UNIVERSITY OF BRITISH COLUMBIA

Block Matrix Operations

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$\begin{bmatrix} a_{13} & a_{14} \\ a_{23} & a_{24} \end{bmatrix} \begin{bmatrix} b_{31} & b_{32} \\ b_{41} & b_{42} \end{bmatrix}$$

Block Operations

□ Scale up the computation to communication

THE UNIVERSITY OF BRITISH COLUMBIA

Triangular Matrix Solve

Upper Triangular Matrix where a's and b's are constants and x's are unknowns to be found

 $a_{n-1,0}x_0 + a_{n-1,1}x_1 + a_{n-1,2}x_2 \dots + a_{n-1,n-1}x_{n-1} = b_{n-1}$

.

$$a_{2,0}x_0 + a_{2,1}x_1 + a_{2,2}x_2 = b_2$$

$$a_{1,0}x_0 + a_{1,1}x_1 = b_1$$

$$a_{0,0}x_0 = b_0$$

Back Substitution

First, unknown x_0 is found from last equation; i.e.,

$$x_0 = \frac{b_0}{a_{0,0}}$$

Value obtained for x_0 substituted into next equation to obtain x_1 ; i.e., $b_1 - a_1 e_1 e_2$

$$x_1 = \frac{b_1 - a_{1,0} x_0}{a_{1,1}}$$

Values obtained for x_1 and x_0 substituted into next equation to obtain x_2 :

$$x_2 = \frac{b_2 - a_{2,0}x_0 - a_{2,1}x_1}{a_{2,2}}$$

THE and SOBOR Until all the unknowns are found.

Re-write the equations

for lower triangular matrices

$$t_1 = b_1$$
 $t_i = b_i - \sum_{j=1}^{i-1} a_{ij} x_j$

so that $t_i = a_{ii} x_i$

 $\begin{bmatrix} a_{11} & & \\ a_{21} & a_{22} & \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

$$t_{1} = b_{1}$$

$$t_{2} = b_{2} - a_{21}x_{1}$$

$$t_{3} = b_{2} - (a_{31}x_{1} + a_{32}x_{2})$$

*i*_1

Linear Array

Soft Systolic

- Spatial locality
 - Locally connected, finite processing elements, each with a small amount of memory
- □ Temporal locality
 - Operates synchronously, internally acting as a small FSA
- □ Regular
 - Small regular collection of identical processing elements called cells
- Pipelinability
 - N cells should achieve order N speed-up
- I/O closeness
 - $\circ~$ No inside cells access the outside
- □ Modularity
 - Can extend to larger designs

