
Location, Location, Location

CPSC 418

November 5

Re-visiting some assumptions

Processor centric view of computing –
concentrating on processors (why?)

Stateful processors tightly coupled to memory,
no first class communication

Sharing and statistical multiplexing

Parallel processing, just in time, not fastest

Applications not algorithms

 Forever computing, streams not datasets

Real-world computing

 Just in time and just in place computing

CPSC418 - Wagner 2

Why “where” is important

Even a little imbalance in work can cause serious loss

of efficiency and to do better we need to “share” the

work. (Amdahl’s law)

Why “where” is important

Suppose we have 5 painters each painting 5 rooms but

one of the rooms is twice the size.

What does Amdahl’s model tell us?

3

6

1

6

1

1

5
6

1
1

6

1

1
)(

















pS

Efficient is only 60% and in general, assuming one processor does

twice as much work, as p increases the efficiency goes to 50%

Even a little imbalance in work can cause serious loss of

efficiency and to do better we need to “share” the work.

Another way to balance --pipelined

 Problem divided into a series of tasks that have
to be completed one after the other (the basis
of sequential programming). Each task
executed by a separate process or processor.

P0 P1 P2 P3 P4 P5

P0 P1 P2 P3 P4 P5

CPSC418 - Wagner 5

Example

cat sort uniq

Unix pipes: cat file | sort | uniq > unique.out

f3, f2, f1

f1

f2 f1

f3 f2 f1

f3 f2

f3

As fast as the slowest part.

CPSC418 - Wagner 6

Achieves something else, communication

from one end of the pipe to the other.

Position data for later processing!

Frequency Example
 Frequency filter - Objective to remove specific

frequencies (f0, f1, f2,f3, etc.) from a digitized signal,

f(t). Signal enters pipeline from left:

CPSC418 - Wagner 7

New strategies for load-balancing

 If the number of stages is larger than the

number of processors in any pipeline, a

group of stages can be assigned to each

processor:

CPSC418 - Wagner 8

Simple Systolic Computation

Simple Algorithms – tend to be fine-grain

Capture both (data in motion)

oData parallel

o Functional decomposition (pipelining)

Computation and Communication

o Temporal

o Spatial

Sorting Example

CPSC418 - Wagner 10

Inside the cell

comparator

register

re
g
iste

r

multiplexor

CPSC418 - Wagner 11

How about output?

Method 1

Method 2

Method 3

Method 4

CPSC418 - Wagner 12

How about the bit level?

CPSC418 - Wagner 13

Binary tree comparator

0 0

1 1

1 0

0 1

0 0

0 0

0 0

CPSC418 - Wagner 14

Overall Implementation

CPSC418 - Wagner 15

Finding the smallest-initial

 01

11

111

 0 0 0

 0 0 0

 0 0

3 0 5 1 2

CPSC418 - Wagner 16

Finding the smallest-step 1

1

11

111

 0 0 0

 0 0 0

 0 0

3 0 5 1

 0

CPSC418 - Wagner 17

Finding the smallest-step 2

1

1

111

 0 0

 0 0 0

 0 0

3 0 5

 0
 0

1

=

CPSC418 - Wagner 18

Finding the smallest-step 3

1

1

111

 0 0

 0 0

 0

3 0

 0 0

1
L

 0

 0

R

CPSC418 - Wagner 19

Finding the smallest-step 4

1

1

111

 0
 0

 0
 0

 0

 0
 0

1

=

 0

 0
L

2

CPSC418 - Wagner 20

Finding the smallest-step 5

1

1

1
11

 0
 0

 0 0

 0

 0 0

1

=
 0

 0
=

25

CPSC418 - Wagner 21

Finding the smallest-step 6

1

1

11
1

 0 0

 0 0

 0

 0 0

1 0

 0

L

251

CPSC418 - Wagner 22

Finding the smallest-step 7

1

1

111

 0 0

 0 0

 0

 0 0

1 0

 0

2513

CPSC418 - Wagner 23

Full Array

10

1

11

11

1 0 0

01

5 1 7 6

CPSC418 - Wagner 24

Step 1

1
0

1

11

11

1 0 0

01

5 1 7

CPSC418 - Wagner 25

Step 2

1

0

1

11

1
1

1 0 0

01

5 1

=

CPSC418 - Wagner 26

Step 3

10

1

11

1
1

1 0 0

0
1

5

R

=

CPSC418 - Wagner 27

Step 4

1
0

1

11

1
1

1
 0 0

0
1

L

R

=

CPSC418 - Wagner 28

Step 5

10

1

11

1
1

1
 0

 0

01

L

=

=

CPSC418 - Wagner 29

Step 6

1
0

1

11

11

1
 0 0

01

R

=

CPSC418 - Wagner 30

Step 7

10

1

11

11

1 0 0

0
1

=

CPSC418 - Wagner 31

Step 8

10

1

1
1

11

1 0 0

01

CPSC418 - Wagner 32

Step 9

10

1

11

11

1 0 0

01

51 6 7

CPSC418 - Wagner 33

Systolic Program

ib 1ib

1iC

iC

 LR,,,  iC

 ,1, 0ib

 ,1 0ia

ia

if (ci == NULL || ci == “=“)

if (bi > ai)

bi+1 = bi; ci+1 = “L”;

else if (ai > bi)

bi+1 = ai; ai = bi; ci+1 = “R”;

else

bi+1 = bi; ci+1 = “R”;

else if (ci == R)

else if (ci == L)

else if (bi == NULL && ai NOT == NULL)

CPSC418 - Wagner 34

Convolution

123 bbb

123 aaa

112131 bababa

122232 bababa

132333 bababa

12345 ppppp

CPSC418 - Wagner 35

Convolution

j

kji

ik bay 



1

  11 ,,, aaa NN    11 ,,, bbb NN 

12  Nki

The convolution of two vectors:

where

  12212 ,,, yyy NN is the vector of length 2N-1,

CPSC418 - Wagner 36

Convolution on a linear array?

34 aa
23 bb

5k

CPSC418 - Wagner 37

Convolution on a linear array?

3a
3b

5k

2b

6k

3a
3b

5k

2b

?k

2a

2a

4a
1b

CPSC418 - Wagner 38

Scheduling of inputs

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3

CPSC418 - Wagner 1-39

continued

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3

CPSC418 - Wagner 40

Example

111

011

000

111

010101

111

CPSC418 - Wagner 41

What about the carries?

011

(1,0)(1,0) (1,0)

0
11

(1,0)(1,0) (1,0)

0

11

(1,0)

(1,0)

(1,0)
0

01

1

(1,0)

(1,0)

(1,0)
00

01

1

(1,0)

(1,0)

(1,0)
00

CPSC418 - Wagner 1-42

What about the carries?

011

(1,0)(1,0)

(1,0)
0001

11

(1,0)(1,0) (1,0)

00111

11

(1,1) (1,0)

011010

1

(1,1) (1,1)

01000 0

CPSC418 - Wagner 1-43

What about the carries?

1

(1,1) (1,1)

01000 0

1

(1,0)

01011 0

(1,0)

01011 0

01011 0

CPSC418 - Wagner 1-44

Making it more efficient?

Matrix – Vector product





N

j

jiji xab
1

BxA 



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

CPSC418 - Wagner 45

Scheduling

x1x2x3x4

a12

a11

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43

y3y2y1 y4

CPSC418 - Wagner 46

Example

x1x2x3x4

a12

a11

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43

CPSC418 - Wagner 47

Example

x1x2x3x4

a12

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43

CPSC418 - Wagner 48

Matrix Multiplication

a12

a11

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43

b23

b14

b32

b13

b12b22

b41 b31 b21

b44 b34

b43

b11

b24

b42

b33

CPSC418 - Wagner 49

Matrix Multiplication

a12

a11

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43

b23

b14

b32

b13

b12b22

b41 b31 b21

b44 b34

b43

b11

b24

b42

b33

CPSC418 - Wagner 50

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication

02/22/2011

CS267 Lecture 11 52

Initial Step to Skew Matrices in Cannon

 Initial blocked input

After skewing before initial block multiplies

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1) B(0,2)

B(1,0)

B(2,0)

B(1,1) B(1,2)

B(2,1) B(2,2)

B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1)

B(0,2)B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2)B(0,0)

Block Matrix Operations





















































4443

3433

4241

3231

2423

1413

2221

1211

aa

aa

aa

aa

aa

aa

aa

aa

2112111111 BABAC 









2423

1413

aa

aa










2221

1211

aa

aa









2221

1211

bb

bb










4241

3231

bb

bb

Block Operations

Scale up the computation to
communication

N

N

Triangular Matrix Solve

 Upper Triangular Matrix where a’s and b’s are

constants and x’s are unknowns to be found

First, unknown x0 is found from last equation; i.e.,

Value obtained for x0 substituted into next equation to

obtain x1; i.e.,

Values obtained for x1 and x0 substituted into next

equation to obtain x2:

and so on until all the unknowns are found.

Back Substitution

Re-write the equations







1

1

i

j

jijii xabt
11 bt 

so that

for lower triangular matrices

iiii xat 



















































3

2

1

3

2

1

333231

2221

11

b

b

b

x

x

x

aaa

aa

a 11 bt 

 23213123 xaxabt 

12122 xabt 

Linear Array

a11

a21

a31a22

a32

a33

a34

a41

a42

a44

x1x2

t1 t2
t3 t4x3x4

ii

i
i

a

t
x 

jiji xat 

Soft Systolic

 Spatial locality
o Locally connected, finite processing elements, each with a small

amount of memory

 Temporal locality
o Operates synchronously, internally acting as a small FSA

 Regular
o Small regular collection of identical processing elements called

cells

 Pipelinability
o N cells should achieve order N speed-up

 I/O closeness
o No inside cells access the outside

 Modularity
o Can extend to larger designs

