Location, Location, Location

CPSC 418
November 5

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Re-visiting some assumptions

1 Processor centric view of computing —
concentrating on processors (why?)

a Stateful processors tightly coupled to memory,
no first class communication

Q Sharing and statistical multiplexing

Q Parallel processing, just in time, not fastest
Q Applications not algorithms

Q Forever computing, streams not datasets
a Real-world computing

Q Just in time and just In place computing

Why “where” is important

Even a little imbalance in work can cause serious loss
of efficiency and to do better we need to “share” the
work. (Amdahl’'s law)

[

BC| THE UNIVERSITY OF BRITISH COLUMBIA

€

Why “where” is important

Even a little imbalance in work can cause serious loss of
efficiency and to do better we need to “share” the work.

Suppose we have 5 painters each painting 5 rooms but
one of the rooms is twice the size.

What does Amdahl’'s model tell us?

S(p)= 1 1 1
1+(1_6V 6" 6
6 S

Efficient is only 60% and in general, assuming one processor does
twice as much work, as p increases the efficiency goes to 50%

THE UNIVERSITY OF BRITISH COLUMBIA

Another way to balance --pipelined

Q Problem divided into a series of tasks that have
to be completed one after the other (the basis
of sequential programming). Each task
executed by a separate process or processor.

R R T R

e

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Example

Unix pipes: cat file | sort | unig > unique.out

A 4
A 4

f3,12,f1 — cat sort unig——

As fast as the slowest part.

Achieves something else, communication
from one end of the pipe to the other.

Position data for later processing!

UBC| THE UNIVERSITY OF BRITISH COLUMBIA
"’Wﬂ CPSC418 - Wagner 6

Frequency Example

a Frequency filter - Objective to remove specific
frequencies (f0O, f1, f2,f3, etc.) from a digitized signal,
f(t). Signal enters pipeline from left:

Signal without
frequency f;

Signal without
frequency fj

f(t)—=| fin Toutt—=] fin

Signal without
frequency f;

[

_——
= v

€

BC| THE UNIVERSITY OF BRITISH COLUMBIA

Signal without
frequency f3

Filtered
signal

New strategies for load-balancing

aIf the number of stages is larger than the
number of processors in any pipeline, a
group of stages can be assigned to each
Processor:

Processor 0

%-Pol-P,Il-

P, |

Processor 1

Processor 2

-

2

Ps |

P H

S E—-

2

Py |

Pml‘

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Simple Systolic Computation

a Simple Algorithms — tend to be fine-grain

Q Capture both (data in motion)
o Data parallel
o Functional decomposition (pipelining)

a Computation and Communication
o Temporal
o Spatial

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Sorting Example

numbers

43125 O—-O—~-0O—-0O—-0

2| 4312 BO—-O—-0O—-0O-0O
2

431 O~O—~-O-0O—-0O

10y

BC| THE UNIVERSITY OF BRITISH COLUMBIA

e
= v

C

€

P, P R P PR

CPSC418 - Wagner

[=
=]
8]

Inside the cell

THE UNIVERSITY OF BRITISH COLUMBIA

5
comparator —
)
Q
0
o}
multiplexor %
— register
CPSC418 - Wagner 11

How about output?

adMethod 1
aMethod 2
adMethod 3

adMethod 4

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

How about the bit level?

Q0 0 O
Q0 0O O
Q000

Binary tree comparator

.
(6

9
\

B
&6

Overall Implementation

0
0
0
0

0
0
0
0

0
0
0
0

0 0
~07
0 0
~07
0 0
~07
0 0
~07

0
0
0
0

Finding the smallest-initial

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Finding the smallest-step 1

30
L]

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Finding the smallest-step 2

3 0 5
U 0
P
—
!

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Finding the smallest-step 3

3 0
| 1
ol
L
0o 1

o 0O
0

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Finding the smallest-step 4

O%O 1
0 O%O
L
0) 1 1

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Finding the smallest-step 5

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Finding the smallest-step 6

Finding the smallest-step 7

3 1 5 2
| ! !
P
N
|
0

Full Array

5 1 7 6
R
//l

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

CPSC418 - Wagner

25

Step 4

Step 5

Step 6

cccccccccccccc

cccccccccccccc

CPSC418 - Wagner

33

Systolic Program

if (ci == NULL || c; == w=N")
if (b; > a;)
lci b;,; = b;; ¢;,;, = “L7;
b b else if (a; > b;)
i iI+1 b a.: a. = b.: c = “R”:
— s a —— i+l = @47 Q4 ir Civ1 ’
' else
b;,; = b;; ¢, = "R
l Ci+1
else if (c; == R)
C ={#=R,L}

else if (c; == L)

else if (b; == NULL && a; NOT == NULL)

[

BC| THE UNIVERSITY OF BRITISH COLUMBIA

€

Convolution

b, b, b
dg d; 9

b, ab, ab,
a2b3 a2b2 azbl
a3b3 a3b2 a3bl

Ps P, P P, P

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Convolution

The convolution of two vectors:

<aN’ N-17° a1> <bN’bN—1""’b1>

IS the vector of length 2N-1,

<y2N_11 y2|\|_2,...,

where yk :- Zaibj

Y1)

Convolution on a linear array?

b, b,

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Convolution on a linear array?

ds

D,
a2
k=5 k =
D,

CPSC418 - Wagner

b2

38

Scheduling of inputs

a; @ a- @ a;

o
as o az [) a;
® b;
as; @ a, o az
bs o
as o az [) a

[=
=]
8]

il

THE UNIVERSITY OF BRITISH COLUMBIA

® b;: @ b @ b;

b; @ b, ® b;

® b, ® b;

b, @ b;

[=
=]
8]

il

continued

o b; ® b,
as ® az ® ai
. b3 . b2 .
as ® a: ® a;
. b3 . b2 . bl
as o a: ® a;
® b; ® b, ® b,
as . as .
. b3 . b2 . b1
as ® az

THE UNIVERSITY OF BRITISH COLUMBIA

What about the carries?

® (1,0) ® (1,0)® (1,0)

l @1 @O0

< - -« - - (1,0) ® (1,0) ® (1,0)
1 ¢l ® —> > g S
0
(1,0)
‘ < P E— - D 0 .(1,0).(110)
l @1 > ' > 7 e
0
(1,0)
‘ < | DR - - 0 (1,0).(110)
1 o > > s 0
1 0
(1,0)
. < | -—— -+ - 0 (1,0).(110)
1 o > > — —» 0
1 0

[

BC| THE UNIVERSITY OF BRITISH COLUMBIA

€

What about the carries?

(1,0) (1,0)

- -, 0 - 0 - 0 (1,0)
—> —> —> —> —>
1 1 0
(1,0) (1,0) (1,0)
- S - - -
e 1y 0 0
1 1
(1,1) (1,0)
- - - - -
o, ,2 1 0o 1 1 O
1 1
(1,1) (1,1)
- - - S — -
o ., 0o J 0 .01 0
UBC| THE UNIVERSITY OF BRITISH COLUMBIA 1

_——
= v

€

What about the carries?

(1,1) (1,1)

- -+ . - -
o | o | o | o | 1| |oO

1
(1,0)
- - - -« -«
1| Jo 1, o | 1 o0
1

(1,0)

- - - - -
1 Jo 1 o | 1| 0

Making it more efficient?

BC| THE UNIVERSITY OF BRITISH COLUMBIA

[

€

Matrix — Vector product

AeXx=DB

Ay

a21

a31

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Ay

a22

a‘32

Ay 3

a‘23

a‘33_

[=
=]
8]

il

THE UNIVERSITY OF BRITISH COLUMBIA

Scheduling

X7

Aag

A3zg ass

A2z4 as3 as2

Aigqg AaAz3 asz2 asl
ai13 a2 a3l ®
a2 azi o |
ai @ @ ®

Y1 Y2 Y3 Y4

[

_——
= v

€

X4

X3

X2

THE UNIVERSITY OF BRITISH COLUMBIA

Ayy

a3y ay3

a2y as3 ay2

dig aAsr3 as2 ajl
aiz Qaz Az o
a2 Ao | o
aii | o o

X1

[

_——
= v

€

X4

X3

dsg
a3y a3
a2y as3 ag2
dig AaAz3 as2 asl
aiz azz asl @
aj? azi @ @
X5 X1

THE UNIVERSITY OF BRITISH COLUMBIA

Matrix Multiplication

Q4

A3y as3

a2 ass ay2

aig ass aso aj
Qi3 az asa o
a2 az: [o
an o ® o

bs;, bis; by, b, @

b3 bss bz bz @ ®

by, bs, by by o ® o

UBC

”

THE UNIVERSITY OF BRITISH COLUMBIA

Matrix Multiplication

bss biz Dby3| Dbis

by, b3, by Dbig () ® ®

[=
=]
8]

THE UNIVERSITY OF BRITISH COLUMBIA

il

Cannon’s Matrix Multiplication

Cannon's Matrix Mul tiplication Algorithm

A(D,0)| A(0,1)| A(0,2) A(D,0)| A(0,1)| A(0,2) A{0,1)| A(0,2)| Af0,0) A{0,2)| A(0,0)| Af0,1)
A(1,0) A{1,2) A{1,2)| A{1,0) A{1,2)| A{1,0) A{L,0) A(1,2)
A(20| A2,D)|A2,2) A2 A2D| A2 AZ0| A2, 1| A2.2) A(2,D)| A2,2)| A2.0)
B(0,0)| B(D,1)| B(D,2) B(0,0)| B(1,1)| B(2,2) B(1,00| B(2,1)| B(D,2) B(2,0)| B(D,1)

B(1,0)| B(1,1) B(1,0)| B(2,1)| B(D,2) T B(2.0)| B(D,1) T B(0,0)| B(1,1)| B(2,2)
B(2.0)| B(2,1)| B(2.2) B(2.0)| B(0,1) B(0,0)| B(1,1)| B(2,2) B(1,0)| B(2,1)| B(D,2)

Initial A, B A, B after skewing A, B after shift k=1 A, B after chift k=2
Cc(1,2) = * +A(1,1)*B(1,2)+ A(1,2) * B(2,2)

[

BC| THE UNIVERSITY OF BRITISH COLUMBIA

€

02/22/2011

Initial Step to Skew Matrices in Cannon
a Initial blocked input

)

ultiplies
2)

S uag pbefore iRt

2)

A(2,2)A(2,0

CS267 Lecture 11 52

Block Matrix Operations

d; oy
:a21 dy,
d3; A
91 By

A3
a23

a'33

a43

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Ay

a

24 _

a'34

a44

{an au} {bn blz}
a'21 a22 21 22

C11 — Ail

by, b
Bl

1 + A&Z BZl
sl

Block Operations

Q Scale up the computation to
communication

JN

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Triangular Matrix Solve

Q Upper Triangular Matrix where a’s and b’s are
constants and x’'s are unknowns to be found

an.1,0X0 t @n1,1X9 * @n12X2 ...+ an.qn1Xn = by,
@ oXp t @z 1X1 T @z »Xo = b,
aq,0Xo * a4 1X4 = b,
aO,OXU = bo

[

BC| THE UNIVERSITY OF BRITISH COLUMBIA

€

Back Substitution

First, unknown X, is found from last equation; i.e.,
b
0

X —_—
0
400

Value obtained for x, substituted into next equation to

obtain x,; I.e.,
by —ay gXg

aq 1

X1=

Values obtained for x; and X, substituted into next
equation to obtain X,:
o = P27820%0 321X
2
422

ag — ahd$0:-0n«ntl-all the unknowns are found.

_——
v~

€

Re-write the equations

for lower triangular matrices
i—1
j=1

so that ti — aiiXi

a,, X, b, tl = bl

dy; Ay Xy | = bz _ .

a a 3 X b t2 T b2 a'21)(1
| 431 dy 33]3] [[M3]

l; = bz — (a31X1 T aszxz)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[=
=]
8]

il

Linear Array

ajg
o Azy
ass o
o as;
az2 ®
. asq
aii

t;
X, @ X3 @ X @ X1

ti
X =—
a..

THE UNIVERSITY OF BRITISH COLUMBIA

as
o as
as:
o t2
K—— ® t;

® t,

Soft Systolic

Q Spatial locality

o Locally connected, finite processing elements, each with a small
amount of memory

Q Temporal locality
o Operates synchronously, internally acting as a small FSA

Q Regqular

e Srﬂall regular collection of identical processing elements called
cells

Q Pipelinability
o N cells should achieve order N speed-up

a I/O closeness
o No inside cells access the outside

a Modularity
o Can extend to larger designs

[

BC| THE UNIVERSITY OF BRITISH COLUMBIA

€

