Location, Location, Location

CPSC 418
 November 5

Re-visiting some assumptions

\square Processor centric view of computing concentrating on processors (why?)
\square Stateful processors tightly coupled to memory, no first class communication
\square Sharing and statistical multiplexing

- Parallel processing, just in time, not fastest
- Applications not algorithms
- Forever computing, streams not datasets
- Real-world computing
\square Just in time and just in place computing

Why "where" is important

Even a little imbalance in work can cause serious loss of efficiency and to do better we need to "share" the work. (Amdahl's law)

Why "where" is important

Even a little imbalance in work can cause serious loss of efficiency and to do better we need to "share" the work.

Suppose we have 5 painters each painting 5 rooms but one of the rooms is twice the size.
What does Amdahl's model tell us?

$$
S(p)=\frac{1}{\frac{1}{6}+\left(1-\frac{1}{6}\right) / 5}=\frac{1}{\frac{1}{6}+\frac{1}{6}}=3
$$

Efficient is only 60% and in general, assuming one processor does twice as much work, as p increases the efficiency goes to 50%

Another way to balance --pipelined

- Problem divided into a series of tasks that have to be completed one after the other (the basis of sequential programming). Each task executed by a separate process or processor.

Example

Unix pipes: cat file | sort | uniq > unique.out

f1		
f2	f1	
f3	f2	f1
	f3	f2
		f3

As fast as the slowest part.

Achieves something else, communication from one end of the pipe to the other.

Position data for later processing!

Frequency Example

- Frequency filter - Objective to remove specific frequencies ($f 0, f 1, \not f 2, \not f 3$, etc.) from a digitized signal, $f(t)$. Signal enters pipeline from left:

New strategies for load-balancing

-If the number of stages is larger than the number of processors in any pipeline, a group of stages can be assigned to each processor:
Processor 0
Processor 1
Processor 2
$-P_{0}-P_{1}-P_{2}-P_{3}-P_{4}-P_{5}-P_{6}-P_{7}-P_{8}-P_{9}-P_{10}-P_{11}-$

Simple Systolic Computation

-Simple Algorithms - tend to be fine-grain
-Capture both (data in motion)

- Data parallel
- Functional decomposition (pipelining)
-Computation and Communication
- Temporal
- Spatial

Sorting Example

Inside the cell

How about output?

-Method 1

-Method 2

-Method 3

-Method 4

How about the bit level?

Binary tree comparator

Overall Implementation

Finding the smallest-initial

Finding the smallest-step 1

Finding the smallest-step 2

Finding the smallest-step 3

Finding the smallest-step 4

Finding the smallest-step 5

Finding the smallest-step 6

Finding the smallest-step 7

Full Array

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Systolic Program

$$
\begin{aligned}
& \text { if }\left(c_{i}==\text { NULL } \| c_{i}=="="\right) \\
& \text { if }\left(b_{i}>a_{i}\right) \\
& \quad b_{i+1}=b_{i} ; c_{i+1}=" L " ; \\
& \text { else if }\left(a_{i}>b_{i}\right) \\
& \quad b_{i+1}=a_{i} ; a_{i}=b_{i} ; c_{i+1}=" R^{\prime} ;
\end{aligned}
$$

else

$$
b_{i+1}=b_{i} ; \quad c_{i+1}=" R "
$$

$$
\text { else if }\left(c_{i}==R\right)
$$

$$
\begin{aligned}
& C_{i}=\{\phi,=, \mathbf{R}, \mathbf{L}\} \\
& b_{i}=\{\phi, 0, \mathbf{1}\} \\
& a_{i}=\{0, \mathbf{1}\}
\end{aligned}
$$

$$
\text { else if }\left(c_{i}==L\right)
$$

$$
\text { else if }\left(b_{i}==\text { NULL } \& \& a_{i} \text { NOT }==\text { NULL }\right)
$$

Convolution

$$
\begin{array}{ccccc}
& & b_{3} & b_{2} & b_{1} \\
& & a_{3} & a_{2} & a_{1} \\
\cline { 3 - 5 } & & a_{1} b_{3} & a_{1} b_{2} & a_{1} b_{1} \\
& a_{2} b_{3} & a_{2} b_{2} & a_{2} b_{1} & \\
a_{3} b_{3} & a_{3} b_{2} & a_{3} b_{1} & & \\
\hline p_{5} & p_{4} & p_{3} & p_{2} & p_{1}
\end{array}
$$

Convolution

The convolution of two vectors:

$$
\left\langle a_{N}, a_{N-1}, \ldots, a_{1}\right\rangle \quad\left\langle b_{N}, b_{N-1}, \ldots, b_{1}\right\rangle
$$

is the vector of length $2 \mathrm{~N}-1, \quad\left\langle y_{2 N-1}, y_{2 N-2}, \ldots, y_{1}\right\rangle$
where

$$
y_{k}=\sum_{i+j=k+1} a_{i} b_{j} \quad i \leq k \leq 2 N-1
$$

Convolution on a linear array?

Convolution on a linear array?

$$
k=5 \quad k=?
$$

Scheduling of inputs

$b_{3} \bigcirc b_{2} \bigcirc b_{1}$

$b_{2} \bigcirc b_{1}$

$b_{2} \bigcirc b_{1}$

continued

Example

What about the carries?

1

- $1 \bigcirc 0$

$\bigcirc(1,0) \bigcirc(1,0) \bigcirc(1,0)$

1

What about the carries?

What about the carries?

Making it more efficient?

Matrix - Vector product

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Scheduling

Example

Example

\mathbf{a}_{44}

$\mathbf{a}_{34} \mathbf{a}_{43}$
a_{24}
\mathbf{a}_{33}
a_{42}
\mathbf{a}_{14}
\mathbf{a}_{23}
\mathbf{a}_{32}
a_{41}
$a_{13} a_{22} a_{31}$

Matrix Multiplication

Matrix Multiplication

Cannon's Matrix Multiplication

Cannon's Matrix Multiplication Algorithm

$\mathbf{A}(0,0)$	$\mathbf{A}(0,1)$	$\mathbf{A}(0,2)$
$\mathbf{A (1 , 0)}$	$\mathbf{A}(1,1)$	$\mathbf{A}(1,2)$
$\mathbf{A (2 , 0)}$	$\mathbf{A}(2,1)$	$\mathbf{A}(2,2)$

$B(0,0)$	$B(0,1)$	$B(0,2)$
$B(1,0)$	$B(1,1)$	$B(1,2)$
$B(2,0)$	$B(2,1)$	$B(2,2)$

Initial A, B

$A(0,0)$	$A(0,1)$	$A(0,2)$
$A(1,1)$	$A(1,2)$	$A(1,0)$
$A(2,2)$	$A(2,0)$	$A(2,1)$

A, B after skewing

$A(0,1)$	$A(0,2)$	$A(0,0)$
$A(1,2)$	$A(1,0)$	$A(1,1)$
$A(2,0)$	$A(2,1)$	$A(2,2)$

$B(1,0)$	$B(2,1)$	$B(0,2)$
$B(2,0)$	$B(0,1)$	$B(1,2)$
$B(0,0)$	$B(1,1)$	$B(2,2)$

A, B after shift $\mathrm{k}=1$

$\mathbf{A (0 , 2)}$	$\mathbf{A (0 , 0)}$	$\mathbf{A (0 , 1)}$
$\mathbf{A (1 , 0)}$	$\mathbf{A (1 , 1)}$	$\mathbf{A (1 , 2)}$
$\mathbf{A (2 , 1)}$	$\mathbf{A (2 , 2)}$	$\mathbf{A (2 , 0)}$

$\mathrm{B}(2,0)$	$\mathrm{B}(0,1)$	$\mathrm{B}(1,2)$
$\mathrm{B}(\mathbf{0}, \mathbf{0})$	$\mathrm{B}(1,1)$	$\mathrm{B}(2,2)$
$\mathrm{B}(1,0)$	$\mathrm{B}(2,1)$	$\mathrm{B}(0,2)$

A, B after shift k=2

$$
C(1,2)=A(1,0) * B(0,2)+A(1,1) * B(1,2)+A(1,2) * B(2,2)
$$

Initial Step to Skew Matrices in Cannon

-Initial blocked input

$A(0,0)$	$A(0,1$	$A(0,2)$
$A(1,0$	$A(1,1)$	$A(1,2)$
$A(2,0$	$A(2,1$	$A(2,2)$

$B(0,0)$	$B(0,1)$	$B(0,2)$
$B(1,0)$	$B(1,1)$	$B(1,2)$
$B(2,0$	$B(2,1)$	$B(2,2)$

\square ^ftar alzowing before ipitinl hlank multiplies

$A(0,0)$	$A(0,1$	$A(0,2)$
$A(1,1)$	$A(1,2)$	$A(1,0)$
$A(2,2)$	$A(2,0$	$A(2,1)$

B(0,0	B(1,1)	$B(2,2)$
B(1,0)	$B(2,1)$	$B(0,2)$
B(2,0	B(0,1)	$B(1,2)$

Block Matrix Operations

$$
\left[\begin{array}{ll}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]} & {\left[\begin{array}{ll}
a_{13} & a_{14} \\
a_{23} & a_{24}
\end{array}\right]} \\
{\left[\begin{array}{ll}
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{array}\right]} & {\left[\begin{array}{ll}
a_{33} & a_{34} \\
a_{43} & a_{44}
\end{array}\right]}
\end{array}\right]
$$

$$
\left.C_{11}=A_{11} B_{11}+A_{12} B_{21}^{a_{11}} \begin{array}{l}
a_{12} \\
a_{21} \\
a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Block Operations

-Scale up the computation to communication

$$
\sqrt{N}
$$

Triangular Matrix Solve

- Upper Triangular Matrix where a's and b's are constants and x's are unknowns to be found

$$
\begin{array}{lll}
a_{n-1,0} x_{0}+a_{n-1,1} x_{1}+a_{n-1,2} x_{2} & \ldots & +a_{n-1, n-1} x_{n-1} \\
& \cdot & =b_{n-1} \\
& \cdot & =b_{2} \\
a_{2,0} x_{0}+a_{2,1} x_{1}+a_{2,2} x_{2} & & =b_{1} \\
a_{1,0} x_{0}+a_{1,1} x_{1} & & =b_{0}
\end{array}
$$

Back Substitution

First, unknown x_{0} is found from last equation; i.e.,

$$
x_{0}=\frac{b_{0}}{a_{0,0}}
$$

Value obtained for x_{0} substituted into next equation to obtain x_{1}; i.e.,

$$
x_{1}=\frac{b_{1}-a_{1,0} x_{0}}{a_{1,1}}
$$

Values obtained for x_{1} and x_{0} substituted into next equation to obtain x_{2} :

$$
x_{2}=\frac{b_{2}-a_{2,0} x_{0}-a_{2,1} x_{1}}{a_{2,2}}
$$

Re-write the equations

for lower triangular matrices

$$
t_{1}=b_{1} \quad t_{i}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}
$$

so that $\quad t_{i}=a_{i i} x_{i}$

$$
\left[\begin{array}{lll}
a_{11} & & \\
a_{21} & a_{22} & \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& t_{1}=b_{1} \\
& t_{2}=b_{2}-a_{21} x_{1} \\
& t_{3}=b_{2}-\left(a_{31} x_{1}+a_{32} x_{2}\right)
\end{aligned}
$$

Linear Array

Soft Systolic

- Spatial locality
- Locally connected, finite processing elements, each with a small amount of memory
- Temporal locality
- Operates synchronously, internally acting as a small FSA
- Regular
- Small regular collection of identical processing elements called cells
- Pipelinability
- N cells should achieve order N speed-up
- I/O closeness
- No inside cells access the outside
- Modularity
- Can extend to larger designs

