
Location, Location, Location

CPSC 418

November 5



Re-visiting some assumptions

Processor centric view of computing –
concentrating on processors (why?)

Stateful processors tightly coupled to memory, 
no first class communication

Sharing and statistical multiplexing

Parallel processing, just in time, not fastest

Applications not algorithms

 Forever computing, streams not datasets

Real-world computing

 Just in time and just in place computing
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Why “where” is important

Even a little imbalance in work can cause serious loss 

of efficiency and to do better we need to “share” the 

work. (Amdahl’s law)



Why “where” is important

Suppose we have 5 painters each painting 5 rooms but 

one of the rooms is twice the size.

What does Amdahl’s model tell us?
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Efficient is only 60% and in general, assuming one processor does 

twice as much work, as p increases the efficiency goes to 50%

Even a little imbalance in work can cause serious loss of 

efficiency and to do better we need to “share” the work. 



Another way to balance --pipelined

 Problem divided into a series of tasks that have 
to be completed one after the other (the basis 
of sequential programming). Each task 
executed by a separate process or processor.

P0 P1 P2 P3 P4 P5

P0 P1 P2 P3 P4 P5
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Example

cat sort uniq

Unix pipes: cat file | sort | uniq > unique.out

f3, f2, f1

f1

f2 f1

f3 f2 f1

f3 f2

f3

As fast as the slowest part.
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Achieves something else, communication 

from one end of the pipe to the other.  

Position data for later processing!



Frequency Example
 Frequency filter - Objective to remove specific 

frequencies (f0, f1, f2,f3, etc.) from a digitized signal, 

f(t).  Signal enters pipeline from left:
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New strategies for load-balancing

 If the number of stages is larger than the 

number of processors in any pipeline, a 

group of stages can be assigned to each 

processor:
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Simple Systolic Computation

Simple Algorithms – tend to be fine-grain

Capture both (data in motion)

oData parallel

o Functional decomposition (pipelining)

Computation and Communication

o Temporal

o Spatial



Sorting Example
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Inside the cell

comparator

register

re
g
iste

r

multiplexor
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How about output?

Method 1

Method 2

Method 3

Method 4
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How about the bit level?
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Binary tree comparator
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Overall Implementation
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Finding the smallest-initial
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Finding the smallest-step 1
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Finding the smallest-step 2
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Finding the smallest-step 3
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Finding the smallest-step 4
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Finding the smallest-step 5
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Finding the smallest-step 6
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Finding the smallest-step 7
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Full Array
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Step 1
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Step 2
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Step 3

10

1

11

1
1

1 0 0

0
1

5

R

=

CPSC418 - Wagner 27



Step 4
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Step 5
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Step 6
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Step 7
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Step 8
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Systolic Program

ib 1ib

1iC

iC

 LR,,,   iC

 ,1,  0ib

 ,1  0ia

ia

if (ci == NULL || ci == “=“)

if (bi > ai)

bi+1 = bi; ci+1 = “L”;

else if (ai > bi)

bi+1 = ai; ai = bi; ci+1 = “R”;

else 

bi+1 = bi; ci+1 = “R”;

else if (ci == R )

else if (ci == L )

else if (bi == NULL && ai NOT == NULL)
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Convolution

123 bbb         

123 aaa         

112131 bababa         

122232 bababa         

132333 bababa         

12345 ppppp                           

CPSC418 - Wagner 35



Convolution

j

kji

ik bay 
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
1

  11 ,,, aaa NN    11 ,,, bbb NN 

12  Nki

The convolution of two vectors:

where  

  12212 ,,, yyy NN is the vector of length 2N-1,  
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Convolution on a linear array?

34 aa     
23 bb     

5k
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Convolution on a linear array?

3a
3b

5k

2b

6k

3a
3b

5k

2b

?k

2a

2a

4a
1b
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Scheduling of inputs

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3

a1a2a3

b1b2b3
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continued

a1a2a3
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Example

111             

011             

000             

111                

010101                                     

111               
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What about the carries?

011
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What about the carries?

011

(1,0)(1,0)
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What about the carries?

1

(1,1) (1,1)

01000 0

1
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01011 0

01011 0
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Making it more efficient?



Matrix – Vector product
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Scheduling

x1x2x3x4

a12

a11

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43

y3y2y1 y4
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Example

x1x2x3x4

a12

a11

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43
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Example

x1x2x3x4

a12

a13

a21

a31a22

a14 a23 a32

a24 a33

a34

a41

a42

a44

a43
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Matrix Multiplication

a12
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b44 b34
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Matrix Multiplication
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C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication



02/22/2011

CS267 Lecture 11 52

Initial Step to Skew Matrices in Cannon

 Initial blocked input

After skewing before initial block multiplies

A(1,0)

A(2,0)

A(0,1) A(0,2)
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Block Matrix Operations
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Block Operations

Scale up the computation to 
communication

N

N



Triangular Matrix Solve

 Upper Triangular Matrix  where a’s and b’s are 

constants and x’s are unknowns to be found



First, unknown x0 is found from last equation; i.e.,

Value obtained for x0 substituted into next equation to 

obtain x1; i.e.,

Values obtained for x1 and x0 substituted into next 

equation to obtain x2:

and so on until all the unknowns are found.

Back Substitution 



Re-write the equations 
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Linear Array
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Soft Systolic

 Spatial locality
o Locally connected, finite processing elements, each with a small 

amount of memory

 Temporal locality
o Operates synchronously, internally acting as a small FSA

 Regular
o Small regular collection of identical processing elements called 

cells

 Pipelinability
o N cells should achieve order N speed-up

 I/O closeness
o No inside cells access the outside

 Modularity
o Can extend to larger designs


