
Data Parallel Computing and CUDA

Mark Greenstreet

CpSc 418 – October 29, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 1 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Outline

Data Parallel Computing (recap): slide 3
I What makes a problem data-parallel?
I Cognitive efficiency of data-parallel computing.
I Energy efficiency of data-parallel computing.

GPU architecture – quick intro
I Multiple pipelines
I No pipeline bypasses
I Lots of threads
I Watch out for memory bottlenecks!

A CUDA example: saxpy
I Program structure: slide 11
I Memory: slide 13
I A simple example: slide 14
I Launching kernels: slide 21

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 2 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Data Parallelism

When you see a for-loop:
I Is the loop-index used as an array index?
I Are the iterations independent?
I If so, you probably have data-parallel code.

Data-Parallel programming often based on “outer-loop” parallelism

I Example: matrix multiplication
for(int i = 0; i < M; i++) {

for(int j = 0; j < N; j++) {
sum = 0.0;
for(int k = 0; k < L; k++)

sum += a[i,k]*b[k,j];
c[i,j] = sum;

} }
I Leave the parallelism of the inner loop for instruction level

parallelism: pipelining and superscalar execution.
I Compute the outer-loop(s) as separate, parallel computations.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 3 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Data Parallelism: Cognitive Efficiency

You get your for-loops back ,
Typically, you give the compiler some directive to let it know that
each iteration of the loop is independent of the others.

I Examples: CUDA, OpenCL, OpenMP, Peril-L, . . .
Aha! They’re not really for-loops, they’re maps!

I But you can write them as a for-loops (OpenMP, Peril-L)
I or with a C-like syntax (CUDA, OpenCL)
I So you can feel like you’re writing a loop, if that’s your thing.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 4 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


x86: Where does all the power go?

Great paper by Hameed et al.: “Understanding sources of
inefficiency in general-purpose chips”, International Symposium
on Cpmputer Architecture, 2010.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.2998.

I Case study: compare x86 with custom chip, for H.264 video
decoding.

I The x86 is 1000× larger (chip area) and uses 1000× the area.
I Bus, the x86 achieves 1

4 the required frame-rate.
I Why is the x86 such an energy wastrel?

Where does the energy go?
I Instruction fetch, decode, and other control issues.
I Energy for ALU operations is negligible.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 5 / 26

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.2998
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


GPUs: better energy efficiency from data parallelism
Each instruction executed by multiple pipelines

I amortizes the control costs
I Pipelines are simple, e.g. no bypasses. Simplifies control and

saves energy.
I Pipelines use multi-threading to “hide” latency.

Register files are large (due to multi-threading)
I register file reads and writes dominate the energy budget
I Energy for ALU operations is negligible.
I GPU is about 10× more energy efficient than the x86 (for H.264

decoding example) but still 100× worse than custom hardware.
Hameed et al. proposed using custom hardware for highly
parallelizable operations

I each data value used many times between register file reads and
writes.

I About 20× more energy efficient than the GPU.
I 5× worse than custom hardware, but easier to design and kind-of

programmable.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 6 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Energy summary

Data-parallel architectures are here to stay.
Custom hardware will be used when the pay-off is large.
Example: ray-tracing and tensor-processing units on current
GPUs.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 7 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


From RISC to GPU in four easy steps

Registers

Instr.
Cache

Data
Cache

data data data

Data

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

datadata

op1

op2

addr addr

addr

rs2

Address

decode MEM

MEM A Pipelined (RISC) CPU

rdst

jr

rs1

A traditional RISC processor

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 8 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


From RISC to GPU in four easy steps

inst
F

I
registers

lots of
deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

I$

PC
D
E
C

ctrl

inst

Make several copies of the execution pipeline
I Deep pipelines: more time per operation means less energy
I Deep pipelines: even though the latency is high, the throughput

remains one instruction pre cycle per pipeline.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 8 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


From RISC to GPU in four easy steps

inst
F

I
registers

lots of
deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

I$

PC
D
E
C

ctrl

inst

Make several copies of the execution pipeline
No pipeline bypasses

I With so many pipeline stages, bypassing becomes impractical.
I Make the pipelines multi-threaded – interleave execution among

many threads.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 8 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


From RISC to GPU in four easy steps

warp

F

I
registers

lots of
deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

registers
lots of

deep pipeline
(20−30 stages)

I$

PC
D
E
C

ctrl

scheduler

inst inst

Make several copies of the execution pipeline
No pipeline bypasses

I With so many pipeline stages, bypassing becomes impractical.
I Make the pipelines multi-threaded – interleave execution among

many threads.
I A group of threads that execute one-per-pipeline is called a “warp”.
I The warp-scheduler determines which instruction to dispatch next.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 8 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


From RISC to GPU in four easy steps

warp

F

I
registers

lots of
deep pipeline

(20−30 stages)

registers
lots of

deep pipeline

(20−30 stages)

registers
lots of

deep pipeline

(20−30 stages)

shared

memory

shared

memory

shared

memory

crossbar

switch

I$

PC
D
E
C

ctrl

scheduler

inst inst

Make several copies of the execution pipeline
No pipeline bypasses
What about caches and memory?

I Caches are a poor choice (for L1): one miss stalls all threads in a
warp.

I The GPU way: the programmer manages shared memory instead.
I Note: GPUs do have caches corresponding to a typical L2 or L3

cache.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 8 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


And there’s more

SM

GDDR

GDDR

G
D

D
R

G
D

D
R

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM
L2$

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Each SM is a SIMD pipeline
as shown on the previous
slide.

I SIMD = Single-Instruction
Multiple-Data

A latest-and-greatest GPU
today has

I 72 SMs
I 64 pipelines per SM
I 12 GDDR memory

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 9 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


CUDA – the programmers view
Threads, warps, blocks, and CGMA – oh my!

How does the programmer cope with SIMD?
I Lots of threads – each thread runs on a separate pipeline.
I A group of thread that execute together, on on each pipeline of a

SIMD core are called “a warp”.
How does the programmer cope with long pipeline latencies,
∼30cycles?

I Lots of threads – interleave threads so that other threads dispatch
instructions while waiting for result of current instruction.

I Note that the need for threads to use multiple pipelines and the
need to use threads to high pipeline latency are multiplicative

I CUDA programs have thousands of threads.
How does the programmer use many SIMD cores?

I Multiple blocks of threads.
I Why are threads partitioned into blocks?

F Threads in the same block can synchronize and communicate easily
– they are running on the same SIMD core.

F Threads in different blocks cannot communicate with each other.
F There is some relaxation of this constraint in the latest GPUs.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 10 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


CUDA Program Structure

A CUDA program consists of three kinds of functions:
I Host functions:

F callable from code running on the host, but not the GPU.
F run on the host CPU;
F In CUDA C, these look like normal functions – they can be preceded

by the host qualifier.
I Device functions.

F callable from code running on the GPU, but not the host.
F run on the GPU;
F In CUDA C, these are declared with a device qualifier.

I Global functions
F called by code running on the host CPU,
F they execute on the GPU.
F In CUDA C, these are declared with a global qualifier.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 11 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Structure of a simple CUDA program

A global function to called by the host program to execute on
the GPU.

I There may be one or more device functions as well.
One or more host functions, including main to run on the host
CPU.

I Allocate device memory.
I Copy data from host memory to device memory.
I “Launch” the device kernel by calling the global function.
I Copy the result from device memory to host memory.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 12 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Execution Model: Memory

GPUCPU

caches DDR

memory
host

GDDR GPU, off−chip

"global" memory

Host memory: DRAM and the CPU’s caches
I Accessible to host CPU but not to GPU.

Device memory: GDDR DRAM on the graphics card.
I Accessible by GPU.
I The host can initiate transfers between host memory and device

memroy.
The CUDA library includes functions to:

I Allocate and free device memory.
I Copy blocks between host and device memory.
I BUT host code can’t read or write the device memory directly.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 13 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Example: saxpy

saxpy = “Scalar a times x plus y”.
The device code.
The host code.
The running saxpy

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 14 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x and y indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 15 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 16 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 17 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I add<<<ceil(n/256.0),256>>>(...) says to create dn/256e

blocks of threads.
I Each block consists of 256 threads.
I See slide 22 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 18 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + y[i]) {

fprintf(stderr,
"ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 19 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 20 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Launching Kernels

Terminology
I Data parallel code that runs on the GPU is called a kernel.
I Invoking a GPU kernel is called launching the kernel.

How to launch a kernel
I The host CPUS invokes a global function.
I The invocation needs to specify how many threads to create.
I Example:

F add<<<ceil(n/256.0),256>>>(...)
F creates

⌈
n

256

⌉
blocks

F with 256 threads each.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 21 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Threads and Blocks
The GPU hardware combines threads into warps

I Warps are an aspect of the hardware.
I All of the threads of warp execute together – this is the SIMD part.
I The functionality of a program doesn’t depend on the warp details.
I But understanding warps is critical for getting good performance.

Each warp has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, it can

execute for all threads of the warp.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPU in lin25 supports 32 such warps of 32 threads each in a

“thread block.”
What if our application needs more threads?

I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).
I The GPU can swap thread-blocks in and out of main memory

F This is GPU system software that we don’t see as user-level
programmers.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 22 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Compiling and running

lin25$ nvcc saxpy.cu -o saxpy
lin25$ ./saxpy 1000
The results match!

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 23 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


But is it fast?

For the saxpy example as written here, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 24 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Preview

October 31: GPU Threads (part 1)
Reading: Kirk & Hwu – Chapter 3

November 2: GPU Threads (part 2)
November 5: Systolic Algorithms (part 1)
November 7: Systolic Algorithms (part 2)
November 9: GPU Memory

Reading: Kirk & Hwu – Chapter 4

Kirk & Hwu = Programming Massively Parallel Computers
On-line here – where “here” means
https://www.sciencedirect.com/book/9780128119860/
programming-massively-parallel-processors

Free access from UBC (use the UBC library ezproxy from
off-campus).

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 25 / 26

https://www.sciencedirect.com/book/9780128119860/programming-massively-parallel-processors
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


Review

What is SIMD execution?
What don’t GPUs have pipeline bypasses?
Why do CUDA programs use so many threads?
Think of a modification to the saxpy program and try it.

I You’ll probably find you’re missing programming features for many
things you’d like to try.

I What do you need?
I Stay tuned for upcoming lectures.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 26 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018

