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Outline

Data Parallel Computing (recap): slide 3
I What makes a problem data-parallel?
I Cognitive efficiency of data-parallel computing.
I Energy efficiency of data-parallel computing.

GPU architecture – quick intro
I Multiple pipelines
I No pipeline bypasses
I Lots of threads
I Watch out for memory bottlenecks!

A CUDA example: saxpy
I Program structure: slide 11
I Memory: slide 13
I A simple example: slide 14
I Launching kernels: slide 21
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Data Parallelism

When you see a for-loop:
I Is the loop-index used as an array index?
I Are the iterations independent?
I If so, you probably have data-parallel code.

Data-Parallel programming often based on “outer-loop” parallelism

I Example: matrix multiplication
for(int i = 0; i < M; i++) {

for(int j = 0; j < N; j++) {
sum = 0.0;
for(int k = 0; k < L; k++)

sum += a[i,k]*b[k,j];
c[i,j] = sum;

} }
I Leave the parallelism of the inner loop for instruction level

parallelism: pipelining and superscalar execution.
I Compute the outer-loop(s) as separate, parallel computations.
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Data Parallelism: Cognitive Efficiency

You get your for-loops back ,
Typically, you give the compiler some directive to let it know that
each iteration of the loop is independent of the others.

I Examples: CUDA, OpenCL, OpenMP, Peril-L, . . .
Aha! They’re not really for-loops, they’re maps!

I But you can write them as a for-loops (OpenMP, Peril-L)
I or with a C-like syntax (CUDA, OpenCL)
I So you can feel like you’re writing a loop, if that’s your thing.
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x86: Where does all the power go?

Great paper by Hameed et al.: “Understanding sources of
inefficiency in general-purpose chips”, International Symposium
on Cpmputer Architecture, 2010.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.2998.

I Case study: compare x86 with custom chip, for H.264 video
decoding.

I The x86 is 1000× larger (chip area) and uses 1000× the area.
I Bus, the x86 achieves 1

4 the required frame-rate.
I Why is the x86 such an energy wastrel?

Where does the energy go?
I Instruction fetch, decode, and other control issues.
I Energy for ALU operations is negligible.
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GPUs: better energy efficiency from data parallelism
Each instruction executed by multiple pipelines

I amortizes the control costs
I Pipelines are simple, e.g. no bypasses. Simplifies control and

saves energy.
I Pipelines use multi-threading to “hide” latency.

Register files are large (due to multi-threading)
I register file reads and writes dominate the energy budget
I Energy for ALU operations is negligible.
I GPU is about 10× more energy efficient than the x86 (for H.264

decoding example) but still 100× worse than custom hardware.
Hameed et al. proposed using custom hardware for highly
parallelizable operations

I each data value used many times between register file reads and
writes.

I About 20× more energy efficient than the GPU.
I 5× worse than custom hardware, but easier to design and kind-of

programmable.
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Energy summary

Data-parallel architectures are here to stay.
Custom hardware will be used when the pay-off is large.
Example: ray-tracing and tensor-processing units on current
GPUs.
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From RISC to GPU in four easy steps
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A traditional RISC processor
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From RISC to GPU in four easy steps
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Make several copies of the execution pipeline
I Deep pipelines: more time per operation means less energy
I Deep pipelines: even though the latency is high, the throughput

remains one instruction pre cycle per pipeline.
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From RISC to GPU in four easy steps
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Make several copies of the execution pipeline
No pipeline bypasses

I With so many pipeline stages, bypassing becomes impractical.
I Make the pipelines multi-threaded – interleave execution among

many threads.
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From RISC to GPU in four easy steps

warp
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Make several copies of the execution pipeline
No pipeline bypasses

I With so many pipeline stages, bypassing becomes impractical.
I Make the pipelines multi-threaded – interleave execution among

many threads.
I A group of threads that execute one-per-pipeline is called a “warp”.
I The warp-scheduler determines which instruction to dispatch next.
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From RISC to GPU in four easy steps
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Make several copies of the execution pipeline
No pipeline bypasses
What about caches and memory?

I Caches are a poor choice (for L1): one miss stalls all threads in a
warp.

I The GPU way: the programmer manages shared memory instead.
I Note: GPUs do have caches corresponding to a typical L2 or L3

cache.
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And there’s more
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Each SM is a SIMD pipeline
as shown on the previous
slide.

I SIMD = Single-Instruction
Multiple-Data

A latest-and-greatest GPU
today has

I 72 SMs
I 64 pipelines per SM
I 12 GDDR memory

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 9 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


CUDA – the programmers view
Threads, warps, blocks, and CGMA – oh my!

How does the programmer cope with SIMD?
I Lots of threads – each thread runs on a separate pipeline.
I A group of thread that execute together, on on each pipeline of a

SIMD core are called “a warp”.
How does the programmer cope with long pipeline latencies,
∼30cycles?

I Lots of threads – interleave threads so that other threads dispatch
instructions while waiting for result of current instruction.

I Note that the need for threads to use multiple pipelines and the
need to use threads to high pipeline latency are multiplicative

I CUDA programs have thousands of threads.
How does the programmer use many SIMD cores?

I Multiple blocks of threads.
I Why are threads partitioned into blocks?

F Threads in the same block can synchronize and communicate easily
– they are running on the same SIMD core.

F Threads in different blocks cannot communicate with each other.
F There is some relaxation of this constraint in the latest GPUs.
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CUDA Program Structure

A CUDA program consists of three kinds of functions:
I Host functions:

F callable from code running on the host, but not the GPU.
F run on the host CPU;
F In CUDA C, these look like normal functions – they can be preceded

by the host qualifier.
I Device functions.

F callable from code running on the GPU, but not the host.
F run on the GPU;
F In CUDA C, these are declared with a device qualifier.

I Global functions
F called by code running on the host CPU,
F they execute on the GPU.
F In CUDA C, these are declared with a global qualifier.
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Structure of a simple CUDA program

A global function to called by the host program to execute on
the GPU.

I There may be one or more device functions as well.
One or more host functions, including main to run on the host
CPU.

I Allocate device memory.
I Copy data from host memory to device memory.
I “Launch” the device kernel by calling the global function.
I Copy the result from device memory to host memory.
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Execution Model: Memory

GPUCPU

caches DDR

memory
host

GDDR GPU, off−chip

"global" memory

Host memory: DRAM and the CPU’s caches
I Accessible to host CPU but not to GPU.

Device memory: GDDR DRAM on the graphics card.
I Accessible by GPU.
I The host can initiate transfers between host memory and device

memroy.
The CUDA library includes functions to:

I Allocate and free device memory.
I Copy blocks between host and device memory.
I BUT host code can’t read or write the device memory directly.
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Example: saxpy

saxpy = “Scalar a times x plus y”.
The device code.
The host code.
The running saxpy
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saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x and y indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.
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saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.
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saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.

Greenstreet Data Parallel & CUDA CpSc 418 – Oct. 29, 2018 17 / 26

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_29
https://en.wikipedia.org/wiki/2018


saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I add<<<ceil(n/256.0),256>>>(...) says to create dn/256e

blocks of threads.
I Each block consists of 256 threads.
I See slide 22 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.
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saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + y[i]) {

fprintf(stderr,
"ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results.
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saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.
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Launching Kernels

Terminology
I Data parallel code that runs on the GPU is called a kernel.
I Invoking a GPU kernel is called launching the kernel.

How to launch a kernel
I The host CPUS invokes a global function.
I The invocation needs to specify how many threads to create.
I Example:

F add<<<ceil(n/256.0),256>>>(...)
F creates

⌈
n

256

⌉
blocks

F with 256 threads each.
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Threads and Blocks
The GPU hardware combines threads into warps

I Warps are an aspect of the hardware.
I All of the threads of warp execute together – this is the SIMD part.
I The functionality of a program doesn’t depend on the warp details.
I But understanding warps is critical for getting good performance.

Each warp has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, it can

execute for all threads of the warp.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPU in lin25 supports 32 such warps of 32 threads each in a

“thread block.”
What if our application needs more threads?

I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).
I The GPU can swap thread-blocks in and out of main memory

F This is GPU system software that we don’t see as user-level
programmers.
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Compiling and running

lin25$ nvcc saxpy.cu -o saxpy
lin25$ ./saxpy 1000
The results match!
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But is it fast?

For the saxpy example as written here, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.
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Preview

October 31: GPU Threads (part 1)
Reading: Kirk & Hwu – Chapter 3

November 2: GPU Threads (part 2)
November 5: Systolic Algorithms (part 1)
November 7: Systolic Algorithms (part 2)
November 9: GPU Memory

Reading: Kirk & Hwu – Chapter 4

Kirk & Hwu = Programming Massively Parallel Computers
On-line here – where “here” means
https://www.sciencedirect.com/book/9780128119860/
programming-massively-parallel-processors

Free access from UBC (use the UBC library ezproxy from
off-campus).
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Review

What is SIMD execution?
What don’t GPUs have pipeline bypasses?
Why do CUDA programs use so many threads?
Think of a modification to the saxpy program and try it.

I You’ll probably find you’re missing programming features for many
things you’d like to try.

I What do you need?
I Stay tuned for upcoming lectures.
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