Data Parallel Computing and CUDA

Mark Greenstreet

CpSc 418 — October 26, 2018

@ Data Parallel Computing: slide 2
» Computation that does the “same” thing to lots of data
» Such problem are good candidates for parallel computation.
» Example: training neural networks

@ CUDA: Data Parallel Computing on GPUs

GPUs and parallelism

Program structure: slide 12

Memory: slide 14

A simple example: slide 15

Launchlng kernels sI|de 22
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Data Parallelism

@ When you see a for-loop:
» Is the loop-index used as an array index?
» Are the iterations independent?
» If so, you probably have data-parallel code.

@ Data-Parallel problems:

» Run well on GPUs because each element (or segment) of the array
can be handled by a different thread.

» Data parallel problems are good candidate for most parallel
techniques because the available parallelism grows with the
problem size.

» Compare with “task parallelism” where the problem is divided into
the same number of tasks regardless of its size.
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Which of the following loops are data parallel?

for(int 1 = 0; 1 < N; 1i++)
cli] = a[i]l + b[i].

dotprod = 0.0;
for(int 1 = 0; 1 < N; i++)
dotprod += afi]l*b[i];

for(int 1 = 1; 1 < N; i++)
ali] = 0.5*x(a[i-1] + al[i]l);

for(int 1 = 1; 1 < N; i++)
ali] = sgrt(ali-1] + alil);

for(int 1 = 0; 1 < M; i++) {
for(int j = 0; j < N; j++) {
sum = 0.0;
for(int k = 0; k < L; k++)
sum += al[i,k]*bl[k,J];
cl[i,j] = sum;
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Neurons

NEURON

@ Dendrites are inputs to other neurons.

@ Axon terminals are output to other neurons.
@ Simple model:

» a neuron computes a weighted sum of its inputs — each input is 0 or 1.
» if this sum is greater than a threshold, the neuron “fires” — it's output
becomes one.

Outout = 1, if»  Weight;Input; > Threshold
i
0, otherwise

@ We can revise the model to make it

» More biologically accurate — this is what neuro-biologists do.
» Easier to evaluate on a computer — this is what machine learning people do.
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Neural Networks, one layer

@ Lots of inputs, and lots of outputs.
@ A single input can influence many outputs:
» Real neurons can have thousands of connections.

» Three-dimensional wiring (in the brain) allows for complicated
interconnection.

@ For machine learning:

Output = Threshold (W Input)

» Input is a vector of input values.
» W is a matrix of weights. Each row of the matrix models a neuron.
» Threshold is a function that is applied to each element of W x Input.
» To keep the computation tractable:

* W has many inputs and many outputs but is linear.

* Threshold has one input and one output but is non-linear.

* We don’t try to handle multi-in, multi-out, and non-linear all at the

same time.
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Deep Neural Networks

input —> W, 04 Wo @“’ oo —= Wi decision

Midy = Thresholdy (W1 Input)
Mid, = Thresholds (W2 Midy)
Output Thresholdn (W Midyn_1)

@ The first layer of neurons computes the inputs to the next layer.
@ We keep going until we get to the output.

@ In theory, two-layers can compute anything.

» Deeper networks can be much smaller in total size — this is what
made Geoff Hinton famous.
» But, deep networks are hard to train.
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Training Neural Networks (Supervised)

S % —{ W, Wo cee s Wy ggg ta

@ Bring lots of dog treats. ©
@ Let’s say that | want to train a network to recognize all goats in a photograph.
@ Find millions of photographs with the goats (if they have any) labeled.

@ Set up a neural network with random values for the elements of the W
matrices.

@ Calculate the error metric of the network (initially, Error > Awful)

@ Calculate the derivative of the error with respect to the elements of the
matrices.

@ Adjust the coefficients to lower error.
@ Repeat a whole lot of times.

@ End product: a neural network that can recognize goats in pictures as well as
an expert goat herd.
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Why we care (in CpSc 418)

@ Training neural networks is very data parallel.
» E.g., we can calculate the errors from each photo, and them
combine them with reduce.
» If we’ve got millions of photos, nearly all of the time is spent
computing the gradients (i.e. the derivatives).
» We can process each photo independently — in parallel
@ Note that we’ll be doing lots of matrix-vector and matrix-matrix
multiplications.
» This is officially a machine learning class; so we won’t be looking
for goat in photos here.
» But, we will see that many GPU/CUDA applications emphasize
algorithms such as matrix multiplication.
» Machine learning is a big motivation behind the huge grown in
popularity of matrix multiplication.
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GPUs and Data Parallelism

@ GPUs designed for data-parallel computing
» Each polygon or pixel can be an independent parallel computation.
@ GPUs designed for numerical computation
» Shading, coordinate transformations, physical animation are all
numerical computation problem.s
@ GPUs have become more programmable to handle a wider range
of graphics tasks.
» In the past 10-15 years, GPUs have become programmable enough
that they are useful for scientific computing and machine learning.
» At first, this was done by hard-core graphics/scientfic computing
people who figured out how to implement scientific computing

libraries using OpenGL!
» nVidia saw an opportunity and created CUDA to make it easier.

* OpenCL is a vendor independent alternative to CUDA.
* We use CUDA because presently it has more comprehensive support
and is easier for getting started.
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Key Features of GPU Architectures

@ GPUs are Single-Instruction, Multiple-Data (SIMD) machines
» Each instruction is executed for many data streams using many pipelines.
» This amortizes the cost of instruction fetch, decode, and control.
» The lock-step execution of the pipelines simplifies synchronization issues.
@ GPUs have deep pipelines
» Breaking instruction execution into small steps allows simple hardware to
get good performance.
» No bypasses — each instruction must go all the way through the pipeline
before another instruction can use the results.
@ GPUs have many execution units
» Typically 8 to 100+ SIMD processors, where each SIMD processor has
32-128 pipelines.
» A total of 1000 to 10000 pipelines executing in parallel.
@ Memory accesses are a major bottleneck
» With so many pipelines, a high-end GPU can perform ~ 103 floating point
operations per second.
» Memory bandwidth is ~5.5-10"" bytes per second. With 4-bytes per
single precision floating point number, we need ~ 70 floating point
operations per memory read or write to keep the pipelines busy.
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CUDA — the programmers view
Threads, warps, blocks, and CGMA — oh my!
@ How does the programmer cope with SIMD?
» Lots of threads — each thread runs on a separate pipeline.
» A group of thread that execute together, on on each pipeline of a
SIMD core are called “a warp”.
@ How does the programmer cope with long pipeline latencies,
~30cycles?
» Lots of threads — interleave threads so that other threads dispatch
instructions while waiting for result of current instruction.
» Note that the need for threads to use multiple pipelines and the
need to use threads to high pipeline latency are multiplicative
» CUDA programs have thousands of threads.
@ How does the programmer use many SIMD cores?
» Multiple blocks of threads.
» Why are threads partitioned into blocks?
* Threads in the same block can synchronize and communicate easily
— they are running on the same SIMD core.

* Threads in different blocks cannot communicate with each other.
* There is some relaxation of this constraint in the latest GPUs.
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CUDA Program Structure

@ A CUDA program consists of three kinds of functions:
» Host functions:
* callable from code running on the host, but not the GPU.
* run on the host CPU;
* In CUDA C, these look like normal functions — they can be preceded
by the __host__ qualifier.
» Device functions.
* callable from code running on the GPU, but not the host.
* run on the GPU;
* In CUDA C, these are declared with a __device__ qualifier.
» Global functions
* called by code running on the host CPU,
* they execute on the GPU.
* In CUDA C, these are declared with a __global__ qualifier.
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Structure of a simple CUDA program

@ A _global__function to called by the host program to execute on
the GPU.

» There may be one or more __device__functions as well.

@ One or more host functions, including main to run on the host
CPU.
» Allocate device memory.
» Copy data from host memory to device memory.
» “Launch” the device kernel by calling the __global__function.
» Copy the result from device memory to host memory.
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Execution Model: Memory

CPU GPU
host
memory
|caches| [DDR| |GDDR| GPU. off—chip
i "global" memory

@ Host memory: DRAM and the CPU’s caches
» Accessible to host CPU but not to GPU.
@ Device memory: GDDR DRAM on the graphics card.
» Accessible by GPU.
» The host can initiate transfers between host memory and device
memroy.
@ The CUDA library includes functions to:

» Allocate and free device memory.
» Copy blocks between host and device memory.
» BUT host code can’t read or write the device memory directly.

Greenstreet Data Parallel & CUDA CpSc 418 — Oct. 26, 2018 14/27


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_26
https://en.wikipedia.org/wiki/2018

Example: saxpy

saxpy = “Scalar a times x plus y”.
@ The device code.
@ The host code.
@ The running saxpy
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saxpy. device code

__global_. void saxpy (uint n, float a, float xx, float xy) {

uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if (i < n)
y[i] = a»x[i] + y[i];

@ Each thread has x and y indices.
» We'll just use x for this simple example.
@ Note that we are creating one thread per vector element:

» Exploits GPU hardware support for multithreading.

» We need to keep in mind that there are a large, but limited number
of threads available.
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saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argvi[l]);
float *x, *y, *Vyy;
float xdev.x, =xdev.y;
int size = nxsizeof (float);

x = (float *)malloc(size);
y = (float x)malloc(size);
vy = (float x)malloc(size);
for(int i = 0; 1 < n; i++) {
x[1i] i;
yl[i] = ixi;

@ Declare variables for the arrays on the host and device.
@ Allocate and initialize values in the host array.
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saxpy: host code (part 2 of 5)

int main (void) {

(void**) (&dev_x), size);
(voidx*«*) (&dev.y), size);
dev._x, x, size, cudaMemcpyHostToDevice);
dev.y, y, size, cudaMemcpyHostToDevice);

cudaMalloc
cudaMalloc
cudaMemcpy
cudaMemcpy

@ Allocate arrays on the device.
@ Copy data from host to device.
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saxpy: host code (part 3 of 5)

int main (void) {

float a = 3.0;
saxpy<<<ceil (n/256.0),256>>>(n, a, dev.x, dev.y);
cudaMemcpy (yy, dev.y, size, cudaMemcpyDeviceToHost);

@ Invoke the code on the GPU:
» add<<<ceil (n/256.0),256>>>(...) says to create [n/256]
blocks of threads.
» Each block consists of 256 threads.
» See slide 23 for an explanation of threads and blocks.
» The pointers to the arrays (in device memory) and the values of n
and a are passed to the threads.

@ Copy the result back to the host.
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saxpy: host code (part 4 of 5)

for(int i = 0; 1 < n; i++) { // check the result

if(yy[il != a*x[i] + y[i]) {
fprintf (stderr,
"ERROR: i=%d, al[il=%f, b[i]=%f, c[i]=%f\n",
i, ali], b[i]l, clil);
exit (-1);
I3
}
printf ("The results match!\n");
}

@ Check the results.
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saxpy: host code (part 5 of 5)

int main(void) {
free (x);
free(y);
free(yy);
cudaFree (dev_x) ;

cudaFree (dev.y) ;
exit (0);

@ Clean up.
@ We're done.
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Launching Kernels

@ Terminology

» Data parallel code that runs on the GPU is called a kernel.
» Invoking a GPU kernel is called launching the kernel.

@ How to launch a kernel

» The host CPUS invokes a __global__ function.
» The invocation needs to specify how many threads to create.
» Example:

* add<<<ceil (n/256.0),256>>>(...)

* creates [ | blocks

256
* with 256 threads each.
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Threads and Blocks

@ The GPU hardware combines threads into warps
» Warps are an aspect of the hardware.
» All of the threads of warp execute together — this is the SIMD part.
» The functionality of a program doesn’t depend on the warp details.
» But understanding warps is critical for getting good performance.
@ Each warp has a “next instruction” pending execution.
» If the dependencies for the next instruction are resolved, it can
execute for all threads of the warp.
» The hardware in each streaming multiprocessor dispatches an
instruction each clock cycle if a ready instruction is available.
» The GPU in 1in25 supports 32 such warps of 32 threads each in a
“thread block.”
@ What if our application needs more threads?

» Threads are grouped into “thread blocks”.
» Each thread block has up to 1024 threads (the HW limit).
» The GPU can swap thread-blocks in and out of main memory
* This is GPU system software that we don’t see as user-level
programmers.
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Compiling and running

1in25$ nvcc saxpy.cu -0 saxpy
1in25$% ./saxpy 1000
The results match!
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But is it fast?

@ For the saxpy example as written here, not really.
» Execution time dominated by the memory copies.
@ But, it shows the main pieces of a CUDA program.
@ To get good performance:
» We need to perform many operations for each value copied
between memories.
» We need to perform many operations in the GPU for each access to
global memory.

» We need enough threads to keep the GPU cores busy.
» We need to watch out for thread divergence:

* If different threads execute different paths on an if-then-else,
* Then the else-threads stall while the then-threads execute, and
vice-versa.

» And many other constraints.
@ GPUs are great if your problem matches the architecture.
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Preview

February 13: Tuesday — Mark’s office hours
HW 4 goes out — midterm review, maybe some simple CUDA
February 14: GPU Architecture

Reading: Kirk & Hwu — Chapter 3
Homework:  HW 3 earlybird (1:00pm).
PIKAs: PIKA 4 goes out.

February 15:

Homework:  HW 3 due (1:00pm).
February 16: Midterm Review

PIKAs: PIKA 4 due (1:00pm).
February 19-23: break week
February 28: midterm — see next slide
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Review

@ What is data parallelism?
@ What is SIMD execution?

@ Think of a modification to the saxpy program and try it.

» You'll probably find you're missing programming features for many
things you'd like to try.

» What do you need?

» Stay tuned for upcoming lectures.
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