Data Parallel Computing and CUDA

Mark Greenstreet

CpSc 418 - October 26, 2018

Data Parallel Computing: <u>slide 2</u>

- Computation that does the "same" thing to lots of data
- Such problem are good candidates for parallel computation.
- Example: training neural networks
- CUDA: Data Parallel Computing on GPUs
 - GPUs and parallelism
 - Program structure: <u>slide 12</u>
 - Memory: <u>slide 14</u>
 - A simple example: <u>slide 15</u>
 - Launching kernels: <u>slide 22</u>

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are

Data Parallel & CUDA

1/27

Data Parallelism

- When you see a for-loop:
 - Is the loop-index used as an array index?
 - Are the iterations independent?
 - If so, you probably have data-parallel code.
- Data-Parallel problems:
 - Run well on GPUs because each element (or segment) of the array can be handled by a different thread.
 - Data parallel problems are good candidate for most parallel techniques because the available parallelism grows with the problem size.
 - Compare with "task parallelism" where the problem is divided into the same number of tasks regardless of its size.

Which of the following loops are data parallel?

for(int i = 0; i < N; i++)
c[i] = a[i] + b[i].</pre>

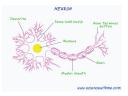
dotprod = 0.0; for(int i = 0; i < N; i++) dotprod += a[i]*b[i];

for(int i = 1; i < N; i++)
a[i] = 0.5*(a[i-1] + a[i]);</pre>

for(int i = 1; i < N; i++)
a[i] = sqrt(a[i-1] + a[i]);</pre>

```
for(int i = 0; i < M; i++) {
  for(int j = 0; j < N; j++) {
    sum = 0.0;
    for(int k = 0; k < L; k++)
        sum += a[i,k]*b[k,j];
    c[i,j] = sum;
} </pre>
```

Neurons



- Dendrites are inputs to other neurons.
- Axon terminals are output to other neurons.
- Simple model:
 - ▶ a neuron computes a weighted sum of its inputs each input is 0 or 1.
 - ▶ if this sum is greater than a threshold, the neuron "fires" it's output becomes one.

$$Output = 1, if \sum_{i} Weight_i Input_i > Threshold$$

0, otherwise

- We can revise the model to make it
 - More biologically accurate this is what neuro-biologists do.
 - Easier to evaluate on a computer this is what machine learning people do.

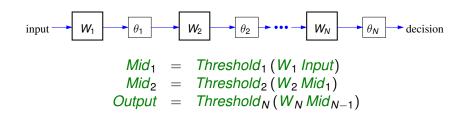
Neural Networks, one layer

- Lots of inputs, and lots of outputs.
- A single input can influence many outputs:
 - Real neurons can have thousands of connections.
 - Three-dimensional wiring (in the brain) allows for complicated interconnection.
- For machine learning:

Output = Threshold (W Input)

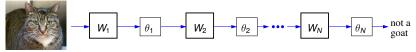
- Input is a vector of input values.
- ▶ *W* is a matrix of weights. Each row of the matrix models a neuron.
- Threshold is a function that is applied to each element of W * Input.
- To keep the computation tractable:
 - \star W has many inputs and many outputs but is linear.
 - * Threshold has one input and one output but is non-linear.
 - We don't try to handle multi-in, multi-out, and non-linear all at the same time.

Deep Neural Networks



- The first layer of neurons computes the inputs to the next layer.
- We keep going until we get to the output.
- In theory, two-layers can compute anything.
 - Deeper networks can be much smaller in total size this is what made Geoff Hinton famous.
 - But, deep networks are hard to train.

Training Neural Networks (Supervised)



- Bring lots of dog treats. (2)
- Let's say that I want to train a network to recognize all goats in a photograph.
- Find millions of photographs with the goats (if they have any) labeled.
- Set up a neural network with random values for the elements of the *W* matrices.
- Calculate the error metric of the network (initially, *Error* > *Awful*)
- Calculate the derivative of the error with respect to the elements of the matrices.
- Adjust the coefficients to lower error.
- Repeat a whole lot of times.
- End product: a neural network that can recognize goats in pictures as well as an expert goat herd.

Training Neural Networks (Supervised)

- Bring lots of dog treats. (2)
- Let's say that I want to train a network to recognize all goats in a photograph.
- Find millions of photographs with the goats (if they have any) labeled.
- Set up a neural network with random values for the elements of the *W* matrices.
- Calculate the error metric of the network (initially, *Error* > *Awful*)
- Calculate the derivative of the error with respect to the elements of the matrices.
- Adjust the coefficients to lower error.
- Repeat a whole lot of times.
- End product: a neural network that can recognize goats in pictures as well as an expert goat herd.

Training Neural Networks (Supervised)

- Bring lots of dog treats. (2)
- Let's say that I want to train a network to recognize all goats in a photograph.
- Find millions of photographs with the goats (if they have any) labeled.
- Set up a neural network with random values for the elements of the *W* matrices.
- Calculate the error metric of the network (initially, *Error* > *Awful*)
- Calculate the derivative of the error with respect to the elements of the matrices.
- Adjust the coefficients to lower error.
- Repeat a whole lot of times.
- End product: a neural network that can recognize goats in pictures as well as an expert goat herd.

Why we care (in CpSc 418)

- Training neural networks is very data parallel.
 - E.g., we can calculate the errors from each photo, and them combine them with reduce.
 - If we've got millions of photos, nearly all of the time is spent computing the gradients (i.e. the derivatives).
 - We can process each photo independently in parallel
- Note that we'll be doing lots of matrix-vector and matrix-matrix multiplications.
 - This is officially a machine learning class; so we won't be looking for goat in photos here.
 - But, we will see that many GPU/CUDA applications emphasize algorithms such as matrix multiplication.
 - Machine learning is a big motivation behind the huge grown in popularity of matrix multiplication.

GPUs and Data Parallelism

- GPUs designed for data-parallel computing
 - Each polygon or pixel can be an independent parallel computation.
- GPUs designed for numerical computation
 - Shading, coordinate transformations, physical animation are all numerical computation problem.s
- GPUs have become more programmable to handle a wider range of graphics tasks.
 - In the past 10-15 years, GPUs have become programmable enough that they are useful for scientific computing and machine learning.
 - At first, this was done by hard-core graphics/scientfic computing people who figured out how to implement scientific computing libraries using OpenGL!
 - nVidia saw an opportunity and created CUDA to make it easier.
 - * OpenCL is a vendor independent alternative to CUDA.
 - We use CUDA because presently it has more comprehensive support and is easier for getting started.

Key Features of GPU Architectures

- GPUs are Single-Instruction, Multiple-Data (SIMD) machines
 - Each instruction is executed for many data streams using many pipelines.
 - > This amortizes the cost of instruction fetch, decode, and control.
 - The lock-step execution of the pipelines simplifies synchronization issues.
- GPUs have deep pipelines
 - Breaking instruction execution into small steps allows simple hardware to get good performance.
 - No bypasses each instruction must go all the way through the pipeline before another instruction can use the results.
- GPUs have many execution units
 - Typically 8 to 100+ SIMD processors, where each SIMD processor has 32-128 pipelines.
 - A total of 1000 to 10000 pipelines executing in parallel.
- Memory accesses are a **major** bottleneck
 - With so many pipelines, a high-end GPU can perform ~ 10¹³ floating point operations per second.
 - Memory bandwidth is ~5.5 · 10¹¹ bytes per second. With 4-bytes per single precision floating point number, we need ~70 floating point operations per memory read or write to keep the pipelines busy.

CUDA – the programmers view

Threads, warps, blocks, and CGMA - oh my!

- How does the programmer cope with SIMD?
 - Lots of threads each thread runs on a separate pipeline.
 - A group of thread that execute together, on on each pipeline of a SIMD core are called "a warp".
- How does the programmer cope with long pipeline latencies, $\sim 30 \text{cycles}?$
 - Lots of threads interleave threads so that other threads dispatch instructions while waiting for result of current instruction.
 - Note that the need for threads to use multiple pipelines and the need to use threads to high pipeline latency are multiplicative
 - CUDA programs have thousands of threads.
- How does the programmer use many SIMD cores?
 - Multiple blocks of threads.
 - Why are threads partitioned into blocks?
 - Threads in the same block can synchronize and communicate easily

 they are running on the same SIMD core.
 - * Threads in different blocks cannot communicate with each other.
 - $\star\,$ There is some relaxation of this constraint in the latest GPUs.

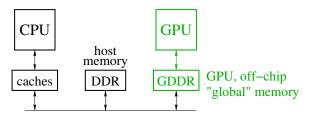
CUDA Program Structure

- A CUDA program consists of three kinds of functions:
 - Host functions:
 - * callable from code running on the host, but not the GPU.
 - run on the host CPU;
 - In CUDA C, these look like normal functions they can be preceded by the __host__ qualifier.
 - Device functions.
 - callable from code running on the GPU, but not the host.
 - run on the GPU;
 - ★ In CUDA C, these are declared with a __device__ qualifier.
 - Global functions
 - called by code running on the host CPU,
 - they execute on the GPU.
 - In CUDA C, these are declared with a __global__ qualifier.

Structure of a simple CUDA program

- A __global__ function to called by the host program to execute on the GPU.
 - There may be one or more __device__ functions as well.
- One or more host functions, including main to run on the host CPU.
 - Allocate device memory.
 - Copy data from host memory to device memory.
 - "Launch" the device kernel by calling the __global__ function.
 - Copy the result from device memory to host memory.

Execution Model: Memory



Host memory: DRAM and the CPU's caches

- Accessible to host CPU but not to GPU.
- Device memory: GDDR DRAM on the graphics card.
 - Accessible by GPU.
 - The host can initiate transfers between host memory and device memroy.
- The CUDA library includes functions to:
 - Allocate and free device memory.
 - Copy blocks between host and device memory.
 - BUT host code can't read or write the device memory directly.

Example: saxpy

- saxpy ="Scalar a times x plus y".
 - The device code.
 - The host code.
 - The running saxpy

saxpy: device code

```
--global-- void saxpy(uint n, float a, float *x, float *y) {
    uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
    if(i < n)
        y[i] = a*x[i] + y[i];
}</pre>
```

- Each thread has x and y indices.
 - We'll just use x for this simple example.
- Note that we are creating one thread per vector element:
 - Exploits GPU hardware support for multithreading.
 - We need to keep in mind that there are a large, but limited number of threads available.

saxpy: host code (part 1 of 5)

```
int main(int argc, char **argv) {
 uint n = atoi(argv[1]);
  float *x, *y, *yy;
  float *dev_x, *dev_y;
  int size = n*sizeof(float);
 x = (float *)malloc(size);
  y = (float *)malloc(size);
  yy = (float *)malloc(size);
  for(int i = 0; i < n; i++) {
    x[i] = i;
   v[i] = i \star i;
  . . .
```

- Declare variables for the arrays on the host and device.
- Allocate and initialize values in the host array.

saxpy: host code (part 2 of 5)

```
int main(void) {
    ...
    cudaMalloc((void**)(&dev_x), size);
    cudaMalloc((void**)(&dev_y), size);
    cudaMemcpy(dev_x, x, size, cudaMemcpyHostToDevice);
    cudaMemcpy(dev_y, y, size, cudaMemcpyHostToDevice);
    ...
}
```

- Allocate arrays on the device.
- Copy data from host to device.

saxpy: host code (part 3 of 5)

```
int main(void) {
    ...
    float a = 3.0;
    saxpy<<<ceil(n/256.0),256>>>(n, a, dev_x, dev_y);
    cudaMemcpy(yy, dev_y, size, cudaMemcpyDeviceToHost);
    ...
}
```

Invoke the code on the GPU:

- add<<<ceil (n/256.0), 256>>> (...) says to create [n/256] blocks of threads.
- Each block consists of 256 threads.
- See <u>slide 23</u> for an explanation of threads and blocks.
- The pointers to the arrays (in device memory) and the values of n and a are passed to the threads.
- Copy the result back to the host.

saxpy: host code (part 4 of 5)

Check the results.

saxpy: host code (part 5 of 5)

```
int main(void) {
    ...
    free(x);
    free(y);
    free(yy);
    cudaFree(dev_x);
    cudaFree(dev_y);
    exit(0);
}
```

Clean up.

• We're done.

Launching Kernels

Terminology

- Data parallel code that runs on the GPU is called a kernel.
- Invoking a GPU kernel is called launching the kernel.
- How to launch a kernel
 - The host CPUS invokes a __global__ function.
 - The invocation needs to specify how many threads to create.
 - Example:
 - * add<<<ceil(n/256.0),256>>>(...)
 - ***** creates $\left[\frac{n}{256}\right]$ blocks
 - with 256 threads each.

Threads and Blocks

- The GPU hardware combines threads into warps
 - Warps are an aspect of the hardware.
 - ► All of the threads of warp execute together this is the SIMD part.
 - ► The functionality of a program doesn't depend on the warp details.
 - But understanding warps is critical for getting good performance.
- Each warp has a "next instruction" pending execution.
 - If the dependencies for the next instruction are resolved, it can execute for all threads of the warp.
 - The hardware in each streaming multiprocessor dispatches an instruction each clock cycle if a ready instruction is available.
 - The GPU in lin25 supports 32 such warps of 32 threads each in a "thread block."
- What if our application needs more threads?
 - Threads are grouped into "thread blocks".
 - Each thread block has up to 1024 threads (the HW limit).
 - The GPU can swap thread-blocks in and out of main memory
 - This is GPU system software that we don't see as user-level programmers.

Compiling and running

lin25\$ nvcc saxpy.cu -o saxpy lin25\$./saxpy 1000 The results match!

But is it fast?

- For the saxpy example as written here, not really.
 - Execution time dominated by the memory copies.
- But, it shows the main pieces of a CUDA program.
- To get good performance:
 - We need to perform many operations for each value copied between memories.
 - We need to perform many operations in the GPU for each access to global memory.
 - We need enough threads to keep the GPU cores busy.
 - We need to watch out for thread divergence:
 - * If different threads execute different paths on an if-then-else,
 - ★ Then the else-threads stall while the then-threads execute, and vice-versa.
 - And many other constraints.
- GPUs are great if your problem matches the architecture.

Preview

	HW 4 goes out – midterm review, maybe some simple CUD/
February 14: G	PU Architecture
Reading:	Kirk & Hwu – Chapter 3
Homework:	HW 3 earlybird (1:00pm).
PIKAs:	PIKA 4 goes out.
February 15:	
Homework:	HW 3 due (1:00pm).
February 16: M	idterm Review
PIKAs:	PIKA 4 due (1:00pm).
February 19-23	: break week

Review

- What is data parallelism?
- What is SIMD execution?
- Think of a modification to the saxpy program and try it.
 - You'll probably find you're missing programming features for many things you'd like to try.
 - What do you need?
 - Stay tuned for upcoming lectures.