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Outline

Review: The 0-1 principle
Bitonic Sort

I Let’s take another look at Merge Sort
I If we use a sorting network, we only have to consider 0s and 1s
I The easy cases
I The general case
I The whole algorithm
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Review: The 0-1 Principle
Statement: If a sorting network sorts all inputs consisting of
0s and 1s correctly, then it sorts all inputs correctly.
Proof (summary):

I Monotonic functions commute with compare-and-swap
I Monotonic functions commute with sorting networks
I Given some input that a sorting network does not sort correctly:

F Choose a threshold-function that can be applied to the outputs of the
sorting network to produce an unsorted output of 0s and 1s.

^ The threshold function is monotonic.
F Move the threshold function to the inputs of the sorting network.
F We now have an input consisting of only 0s and 1s that the sorting

network does not sort correctly.
I ∴ If there is any input that the sorting network does not sort

correctly, there is an input consisting only of 0s and 1s that it does
not sort correctly.

I Contrapostive: If a sorting network sorts all inputs consisting of 0s
and 1s correctly, then it sorts all inputs correctly.

I 2
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Bitonic Sort: Overview

Merge sort is a great sequential sorting algorithm
I But, the final merge step(s) is (are) a sequential bottleneck.

What if we could merge in parallel?
I We’ll use sorting networks. Only need to think about 0s and 1s.
I We’ll see that parallel merge is easy for some special cases.
I Then generalize to any inputs of 0s and 1s.

Once we have a parallel merge, then parallel sort is “easy”
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Merge Sort

Sequential
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Parallel Merge

Recursion assumption: input is two, sorted vectors of equal
length.
Use the 0-1 principle: Inputs are 0s and 1s.
Super easy case, the two input vectors have the same number of
1s.

I How do we merge them?
I See, we use counting arguments.

Easy case: the number of 1’s in the two input vectors differ by at
most 1.
General case: arbitrary input vectors of the same length,
consisting of 0s and 1s.

I This is where bitonic sequences make there appearance.
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Monotonic sequences
A sequence, X0, X1, . . . , XN−1 is monotonically increasing if

X0 ≤ X1 ≤ · · · ≤ XN−1

A sequence, X0, X1, . . . , XN−1 is monotonically decreasing if

X0 ≥ X1 ≥ · · · ≥ XN−1

A sequence is monotonic if it is either monotonically increasing
or monotonically decreasing.
A sequence is strictly monotonically increasing if

X0 < X1 < · · · < XN−1

I Likewise for strictly monotonically decreasing or strictly monotonic.
I We won’t use the “strict” versions very much – they aren’t very

useful with 0-1 sequences. ,
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A handy lemma
Let X be a monotonically increasing sequence of 0s and 1s of
length N. Let Y be a monotonically decreasing sequence of 0s
and 1s of length N.
Let Z be the sequence of length 2N with

Zi = min(Xi ,Yi), 0 ≤ i < N
= max(Xi−N ,Yi−N), N ≤ i < 2N

Then, either Z0, Z1, . . . , ZN−1 are all 0s, or ZN , ZN+1, . . . Z2N−1 are
all 1s.
Proof (details on the whiteboard):

I Let zcount(X ) denote the number of 0s in X .
I If zcount(X ) + zcount(Y ) ≥ N, then Z0, . . . , ZN−1 are all 0s.
I If zcount(X ) + zcount(Y ) ≤ N, then ZN , . . . , Z2N−1 are all 1s.
I 2

What about the other half?
I It’s either 0∗1∗0∗ or 1∗0∗1∗.
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Bitonic Sequences

A sequence is bitonic if it consists of a monotonically increasing
sequence followed by a monotonically decreasing sequence.

I Either of those sub-sequences can be empty.
I We’ll also consider a monotonically decreasing followed by

monotonically increasing sequence to be bitonic.
Properties of bitonic sequence

I Any subsequence of a bitonic sequence is bitonic.
I Let A be a bitonic sequence consisting of 0s and 1s. Let A0 and A1

be the even- and odd-indexed subsequences of A.
I If the length of A is even, then number of 1s in A0 and A1 differ by at

most 1.
F Likewise for the number of 0s.

Greenstreet The Bitonic Sort Algorithm CpSc 418 – Oct. 17, 2018 9 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_17
https://en.wikipedia.org/wiki/2018


The handy lemma, bitonic-version

Let X be a bitonic sequence of 0s and 1s. Let N = length(X ).
Let

Zi = min(Xi ,Xi+N
2
), 0 ≤ i < N

2

Zi = max(Xi−N
2
,Xi),

N
2 ≤ i < N

I Then either Z0, . . . , Z N
2 −1 is all 0s or Z N

2
, . . . , ZN−1 is all 1s, and

I The other half of Z is bitonic.
I Note: this implies that element in the lower half is ≤ every element

in the upper half.
Proof (the easy cases):

I If X0, . . . , X N
2 −1 is all 0s, then Z = X , Z0, . . . , Z N

2 −1 is all 0s, and
Z N

2
, . . . , ZN−1 is bitonic – it’s a subsequence of a bitonic sequence.

I Likewise, if X0, . . . , X N
2 −1 is all 1s, or if X N

2
, . . . , XN−1 is all 0s or all

1s.
I Need to consider the case when both X0, . . . , X N

2 −1 and X N
2
, . . . ,

XN−1 are mixed.
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Case: both halves of X are mixed

Consider the case where X ∈ 0∗1∗0∗ – the other case is equivalent.
Let i be the smallest integer with 0 ≤ i < N

2 such that Xi = 1.

Let j be the smallest integer with N
2 ≤ j < N such that Xj = 0.

If j − i ≤ N
2 , then

I Z0, . . . , Z N
2 −1 is all 0s, and

I Z N
2
, . . . ,ZN−1 ∈ 1∗0∗1∗.

If j − i ≥ N
2 , then

I Z0, . . . ,Z N
2 −1 ∈ 0∗1∗0∗.

I Z N
2
, . . . , ZN−1 is all 1s.

2
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Bitonic Merge
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Bitonic Sort: The big picture

Sort N values
Divide into two halves of size N

2 .
I Parallel: sort each half.
I This is a typical, divide-and-conquer approach.
I Now, we just need to merge the two halves.

Combine the two, sorted halves into one bitonic sequence of
length N.
Use the method described on slide 10 to create a clean half of
length N

2 and a bitonic half of length N
2 .

Recursively merge the two halves.
I Parallel: merge each half.
I The recursion works on sequences of length N, N

2 , N
4 , . . . , 2.

I Total parallel time: log2 N.
I Total number of compare-and-swaps N

2 log2 N.
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Complexity of Bitonic Sort

The whole algorithm:
I Use N

2 compare-and-swap operations in parallel to sort pairs of
elements.

I Perform a 4-way bitonic merge for each pair of length-2 sorted
sequences to obtain a length-4 sorted sequence.

I Perform a 8-way bitonic merge for each pair of length-4 sorted
sequences to obtain a length-8 sorted sequence.

I . . .
I Perform a N-way bitonic merge for the two length- N

2 sorted
sequences to obtain the length-N sorted sequence.

Complexity
Parallel time: ∑

k=1

log2 Nk = O(log2 N)

Total number of compare and swaps: O(N log2 N).
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