Energy and Parallel Computing

Mark Greenstreet

CpSc 418 - October 12, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet \& lan M. Mitchell and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Objectives

- Understand that parallel algorithms can use less energy than their sequential counterparts.
- Familiar with the technology scaling trends that lead to this.
- Where does Moore's Law come from?
- What is Dennard scaling (was it first proposed by Hoeneisen \& Mead?)
- What are energy-time trade-offs for real-world computers
- Aware of how this is likely to impact computing technology in the next decade or so.
- Buying computation by the kilowatt-hour
- What are the opportunities
* Domain specific architectures and languages.
- Where are exponential improvements in technology happening now
- What are energy-time trade-offs for real-world computers
- Aware of how this is likely to impact computing technology in the next decade or so.

Outline

- From silicon atoms to computers.
- Dam transistors
- How to make a computer
- Classical scaling, and why it no longer applies.
- Energy performance trade-offs in real computers.
- Going fast takes lots of energy.
- Many slow parallel tasks can be more energy efficient than one, fast sequential task.
- The case for dedicated co-processors.
- Guessing about the future
- Optical technology has a bright future.
- Dedicated co-processors means domain-specific architectures and programming models.

Dam Electronics

- When the gate, g, is low, it has a negative charge that repels electrons. This is like the dam being high, and no water flows from the source, s, to the drain, d. The switch is "open" - it makes no connection.

Dam Electronics

- When the gate is high, it has a postive charge that attracts electrons. This is like the dam being low, and water flows from the source to the drain. The switch is "closed" - it makes a connection.
- Once we have switches, we can build gates, registers, and all the other wonders of the digital world.

Manufacturing Integrated Circuits

- Transistors and wires are made through a sequence of chemical processing steps.
- Start with a flat, thin, sheet of silicon, a wafer.
- Photographically print a pattern onto the wafer.
- Use chemical processes to change electrical properties of the silicon, deposit metal for wires or glass as an insulator, etch the metal to make wires, etc.
- By making tranistors smaller:
- We can put more processor cores, more memory, etc. onto the chip.
- This creates a profit motive for making smaller and smaller transistors.
- Today's chips have transistors where the "dam" is 14 nanometers across.
\star To compare, a hair is about 20 microns (if you're blond) to about 100 microns (if your hair is black) in diameter. 1 micron is one micro-meter.
* That means we can fit about 1000 tranistors across the diameter of one hair.
- By making tranistors smaller:

Moore's Law

- Moore's Law (original): the number of transistors on a chip will double every year from 1965 through 1975.
- Justification
- Moore took four data points and found they could be fit reasonable well with a line on a semi-log plot. :)
- More seriously, Moore observed that
\star Putting more transistors onto a chip allowed you do build new kinds of electronic devices.
\star There would be a large market for these devices.
* The profits made from selling the chips would allow semiconductor companies to improve their manufacturing processes.
* Transistors would shrink a lot, chips would get bigger.
* Moore extrapolated until 1975 because the various technical challenges seemed solvable given plausible estimates of sales an profit.

Moore's Law - Beyond 1975

- Moore's law has enjoyed many extensions as key manufacturing issues were solved.
- The rate has gradually slowed from doubling every year to doubling every 3 or 4 years.
- Power blocked clock frequency from scaling with transistor size from roughly 2003 and beyond.
- There is a limit to scaling
- Current products in transistors with 14 nm channel length (the thickness of the "dam"). $\mathrm{nm}=$ nanometer $=10^{-9}$ meter.
- Chip designer working on designs with 7 nm channel length.
- Shrinking to 5 nm or 3.5 nm looks really difficult.
- The spacing of silicon atoms in a silicon crystal is around 0.3 nm .

Denard Scaling - Dams

What happens if we scale transistor dimensions and operating voltage by a factor λ ?

- The resevoirs get smaller.
- The resevoir's height, V, goes as λ.
- The resevoir's volume, C, goes as λ^{2}.
- The stored energy in the resevoir goes as λ^{3}.
- The aspect ratio of the dam, $1 / R$ stays constant
- The height difference between the source and drain, V, goes as λ.
- The rate of flow over the dam, I, goes as λ - Ohm's law: $I=V / R$.
- The time to fill/drain the resevoir is volume/flow
- That goes as $\lambda^{2} / \lambda=\lambda$.

Denard Scaling - slightly quantitative

- E.g. $\lambda=0.5$ is shrinking everything to half its previous size.
- Gate delay scales as λ.
- Clock frequency scales as $1 /$ delay $=1 / \lambda$.
- Energy per signal transition scales as λ^{3} - this is amazing!
- Power is $\frac{\text { energy }}{/}$ time. Power scales as λ^{2}.
- Number of devices on a chip scales as λ^{-2}.
- Power density (i.e. watts per square centimeter) is constant.
- Conclusion: everything gets way better as we shrink transistors.
- Of course, this requires very precise manufacturing, so it took many rounds of the Moore's Law positive feedback cycle to get to where we are today.

What went wrong: The Power Wall

- To disconnect the source from the drain of the transistor, the "dam" must be above the level of the upper reservoir.
- But, the reservoirs have "waves"
- The waves are the thermal energy of the electrons.
- To turn off a transistor, the dam needs to be about $10 \times$ higher than the average wave.
- The dam height can be at most $\sim 40 \%$ of the operating voltage.
- This sets a lower bound for operating voltage (at room temperature) of about 0.6 V .
- Voltage hasn't scaled as predicted by classical scaling since the early 1990's.
- Chips are faster than they should be by Denard scaling. $)$
- They are also way hotter. \because

Power is the Primary Design Concern

- In the old days, processors were designed primarily for speed.
- Now, they are designed to satisfy a power requirement.
- This impacts all forms of computing:
- mobile devices and battery life
- desktop devices and gaming consoles are limited by cooling
- data centers and cloud services are limited by building cooling.
\star The power bill is a major part of the operating expenses for cloud services.
\star Indirectly, cloud users are buying computation by the kilowatt hour.
\star Although the power bill is indirect in the billing, the financial consequences are very real.

Energy time trade-offs in real life

- The tradeoff that $E \propto T^{-2}$ from the text assumes classical scaling.
- We can't push the operating voltage as low as assumed by such scaling laws.
- Emperically, we get $E \propto T^{-1}$ through a combination of voltage scaling, circuit design, and architectural tradeoffs.
- Parallel computing can still be a big-win for saving energy
- Let's say we can build processors that run $\frac{1}{10}$ the speed of a fast sequential machine. They will each use $\frac{1}{100}$ of the power.
- If a parallel version of the computation gets perfect speed-up, we can run it on 10 slow processors in the same time as running the sequential code on one fast processor.
- The parallel version will use $\frac{1}{10}$ of the energy.

Where does the energy go

- For a general purpose processor: instruction fetch, decode, and other control.
- For a GPU: register file accesses.
- Compared with full-custom hardware:
- A CPU can be $1000 \times$ less energy efficient.
- A GPU can be $100 \times$ less energy efficient - that's better than a CPU, but there is still plenty of room for improvement.
- The factor of $100 \times$ energy waste of current architectures is begging for the next breakthrough.
- What will that breakthrough be?

What went wrong: The Atom Wall

- Chips are now being designed where the gate length (i.e. dam thickness) is about 20 atoms.
- We need to squeeze a low concentration of dopant atoms into the channel.
- It's very hard to manufacture circuits where a few atoms makes a big difference.
- All edges are jagged.
- Photo-lithography (printing the circuit structures with light) is challenging because the transistors are much smaller than a wavelength of the UV light that is used.
- Quantum mechanics becomes a big deal.

What's next? (part 1)

- Parallel computing: how to make good use of Moore transistors without using more power.
- Optics:
- Computer performance is often limited by chip-to-chip interconnect, e.g. the connection between a CPU an memory.
- Glass is much better than copper.
- Optical networking is standard in large data centers.
- Optical interconnect between chips is emerging - there are clever ways to make modulate and detect light beams with silicon.
- Wavelength-division multiplexing (WDM) is awesome - we can have hundreds of simultaneous channels on a single glass fibre by using different wavelengths of light.

What's next? (part 2)

- Higher bandwidth channels to memory
- GPUs now use HBM and HBM2.
\star This involves stacking 16 or 18 memory chips next to the GPU.
\star The memory chips are connected to each other by polishing each chip down to a few tenths of a millimeter thick, etching holes in the chip, filling the holes with metal, and making connections.
\star This allows $10 \times$ the number of connections between the memory chips and between the memory and the GPU.
- Cryogenic memory?
* l've read recently about a joint project between Microsoft and Rambus to look at memory that runs in liquid nitrogen.
\star Silicon in liquid nitrogen has wonderful electrical properties - the waves are much smaller.
\star But, making reliable systems has been a show-stopper because wires become extremely brittle.
夫 I haven't seen how Microsoft and Rambus plan to address this.
- Nanotubes, graphene, spintronics, molecular computing, quantum computing
\star Many long-shots are being explored.

Preview

October 12: Homework 3 released, later today
October 15: Sorting Networks
October 17: The 0-1 Principle
October 18: HW 3 earlybird (11:59pm).
October 19: Midterm Review
Homework: HW3 due: 12 noon.
October 22: Midterm
October 24-26: Sorting (second half)
October 29-November 30: Data Parallelism with CUDA

Summary (part 1)

- Transistors are voltage-controlled switches made of silicon
- We can use controlled switches to make gates, registers, and everything digital.
- Making chips has been a great way to make money:
- More money means better manufacturing processes.
- Better manufacturing means Moore, smaller transistors on a chip.
- Moore transistors, means Moore functionality, and Moore performance.
- Better chips mean Moore profit

Summary (part 2)

- Moore's Law
- The positive feedback loop described above leads to an exponential growth in number of transistors per chip, clock speed, memory capacity, etc.
- Moore's Law is an economic law.
- Exponential trends inevitably collide with physics.
- The end(?) of Moore's Law
- The power wall - chips are at the cooling limit.
- The atom wall - transistor sizes are now a few tens of atoms.
- Why Parallelism matters
- Greater throughput with a huge number of of simpler, lower clock frequency processors.
- The only way go grow performance is with more parallelism.
- For the next 10-20 years, "the next big thing" will be parallel, nearly every time.

