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Outline

@ Overhead: work the parallel code has to do that the sequential
version avoids.
» Communication and Synchronization
» Extra computation, extra memory
@ Limited parallelism
» Code that is inherently sequential or has limited parallelism
» |dle processors
» Resource contention
@ Related topics
» Super-linear speed-up
» Embarrassingly Parallel Problems
» Brent's Lemma
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Objectives

@ Learn about main causes of performance loss:
Overhead

Non-parallelizable code

Idle processors

Resource contention

@ See how these arise in message-passing, and shared-memory
code.
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Causes of Performance Loss

@ |deally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
@ In practice, this rarely happens because of:
» Overhead: work that the parallel program has to do that isn’t
needed in the sequential program.
» Non-parallelizable code: something that has to be done
sequentially.
» |dle processors: There’s work to do, but some processor are
waiting for something before they can work on it.
» Resource contention: Too many processors overloading a limited
resource.
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Overhead

Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.
@ Communication:
» The processes (or threads) of a parallel program need to
communicate.
» A sequential program has no interprocess communication.
@ Synchronization.

» The processes (or threads) of a parallel program need to
coordinate.

» This can be to avoid interference, or to ensure that a result is ready
before it's used, etc.

» Sequential programs have a completely specified order of
execution: no synchronization needed.

@ Computation.
» Recomputing a result is often cheaper than sending it.
@ Memory Overhead.
» Each process may have its own copy of a data structure.
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Communication Overhead

leaf: i mid: root:
create list of N/P elements | wait for readies: i wait for readies
send 'ready’ to parent | send ready to parent | start timer
wait for 'go’ wait for go: send gos
count 3s in the list | send gos to children ! wait for totals
send total to parent 1 wait for tallies i compute grand total
| send total to parent | end timer

1 report results

@ In a parallel program, data must be sent between processors.

@ This isn’t a part of the sequential program.

@ The time to send and receive data is overhead.

@ Communication overhead occurs with both shared-memory and
message passing machines and programs.

@ Example: Reduce (e.g. Count 3s):

» Communication between processes adds time to execution.
» The sequential program doesn’t have this overhead.
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Communication with shared-memory

@ In a shared memory architecture:

» Each core has it's own cache.

» The caches communicate to make sure that all references from
different cores to the same address look like there is one, common
memory.

» |t takes longer to access data from a remote cache than from the
local cache. This creates overhead.

@ False sharing can create communication overhead even when
there is no logical sharing of data.

» This occurs if two processors repeatedly modify different locations
on the same cache line.
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Communication overhead: example

@ The Principles of Parallel Programming book considered an
example of Count 3s (in C, with threads), where there was a
global array, int count [P] where P is the number of threads.

» Each thread (e.g. thread i) initially sets its count, count [1] to 0.
» Each time a thread encounters a 3, it increments its element in the
array.

@ The parallel version ran much slower than the sequential one.

» Cache lines are much bigger than a single int. Thus, many entries
for the count array are on the same cache line.

» A processor has to get exclusive access to update the count for its
thread.

» This invalidates the copies held by the other processors.

» This produces lots of cache misses and a slow execution.

@ A better solution:

» Each thread has a local variable for its count.
» Each thread counts its threes using this local variable and copies its
final total to the entry in the global array.
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Communication overhead with message passing

@ The time to transmit the message through the network.

@ There is also a CPU overhead: the time set up the transmission
and the time to receive the message.

@ The context switches between the parallel application and the
operating system adds even more time.

@ Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.

» This has led to SMP implementations of Erlang, MPI, and other
message passing parallel programming frameworks.

» The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

» This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for multiple
processes on different machines in a cluster.
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Synchronization Overhead

@ Parallel processes must coordinate their operations.
» Example: access to shared data structures.
» Example: writing to a file.

@ For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.

@ For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.
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Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.
@ Redundant computation: it’s faster to recompute the same thing
on each processor than to broadcast.

@ Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.
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Sieve of Eratosthenes

To find all primes < N:

1. Let MightBePrime = [2, 3, ..., N].
2. Let KnownPrimes = [].
3. while (MightBePrime # []) do

Loop invariant: KnownPrimes contains all primes less than the
smallest element of MightBePrime, and MightBePrime
is in ascending order. This ensure that the first element of
MightBePrime is prime.

Let P = firstelement of MightBePrime.

Append P to KnownPrimes.

Delete all multiples of P from MightBePrime.
end

o° o° o o

DSw w w
w N =

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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Prime-Sieve in Erlang

o)

% primes (N): return a list of all primes < N.

primes (N) when is_integer (N) and (N < 2) —-> [];
primes (N) when is_integer (N) ->

do_primes([], lists:seqg(2, N)).

invariants of do_primes(Known, Maybe):
All elements of Known are prime.
No element of Maybe is divisible by any element of Known.
lists:reverse (Known) ++ Maybe is an ascending list.
Known ++ Maybe contains all primes < N, where N is from p (N) .

o° o o° o° oP

do_primes (KnownPrimes, []) —-> lists:reverse (KnownPrimes);
do_primes (KnownPrimes, [P | Etc]) ->
do_primes ([P | KnownPrimes],

lists:filter (fun(E) -> (E rem P) /= 0 end, Etc)).
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A More Efficient Sieve

@ If N is composite, then it has at least one prime factor that is at
most V/N.

@ This means that once we've found a prime that is > v/N, all
remaining elements of Maybe must be prime.

@ Revised code:

% primes (N):return a list of all primes < N.
primes (N) when is_integer (N) and (N < 2) -> [];
primes (N) when is_integer (N) ->
do_primes([], lists:seqg(2, N), trunc(math:sqgrt(N))).

do primes (KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->
do_primes ([P | KnownPrimes],
lists:filter (fun(E) —=> (E rem P) /=0end, Etc), RootN);
do_primes (KnownPrimes, Maybe, _RootN) -—>
lists:reverse (KnownPrimes, Maybe) .
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Prime-Sieve: Parallel Version

@ Main idea

» Find primes from 1...v/N.
» Divide VN + 1... N evenly between processors.
» Have each processor find primes in its interval.

@ We can speed up this program by having each processor compute
the primes from 1...v/N.
» Why does doing extra computation make the code faster?
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Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

@ Example: the parallel sieve: each process had its own copy of the
first v/N primes.
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Overhead: Summary
Overhead is loss of performance due to extra work that the parallel program
does that is not performed by the sequential version. This includes:
@ Communication: parallel processes need to exchange data. A
sequential program only has one process; so it doesn’t have this
overhead.

@ Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order. For a sequential program, this ordering is
provided by the program itself.

@ Extra Computation:

» Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

» Sometimes the best parallel algorithm is a different algorithm than
the sequential version and the parallel one performs more
operations.

@ Extra Memory: Data structures may be replicated in several
different processes.
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Limited Parallelism

Sometimes, we can’t keep all of the processors busy doing useful
work.
@ Non-parallelizable code
The dependency graph for operations is harrow and deep.
@ |dle processors
There is work to do, but it hasn’t been assigned to an idle
processor.

@ Resource contention
Several processes need exclusive access to the same resource.
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Non-parallelizable Code

@ Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)
length++;

» Must dereference each p—>next before it can dereference the next

one.
» Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

@ Searching a binary tree
» Requires 2 processes to get factor of k speed-up.
» Not practical in most cases.
» Again, could consider using another data structure.

@ Interpreting a sequential program.
@ Finite state machines.
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Idle Processors

@ There is work to do, but processors are idle.
@ Start-up and completion costs.

@ Work imbalance.

@ Communication delays.
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Resource Contention

@ Processors waiting for a limited resource.

@ It's easy to change a compute-bound task into an I/O bound one
by using parallel programming.

@ Or, we run-into memory bandwidth limitations:

» Processing cache-misses.
» Communication between CPUs and co-processors.

@ Network bandwidth.

Greenstreet Performance Loss CpSc 418 — Oct. 5, 2018 21/31


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_5
https://en.wikipedia.org/wiki/2018

Super-Linear Speedup

Sometimes you win — SpeedUp > P. ©
@ But if that is true, wouldn’t the best sequential algorithm be to
simulate P workers by time-sharing a single processor?

» Probably not: Time-sharing has overhead.

@ Memory: a common explanation
» P machines have more main memory (DRAM)
» and more cache memory and registers (total)
» and more I/O bandwidth, ...

@ Multi-threading: another common explanation

» The sequential algorithm cannot full utilize each CPU’s parallel
capabilities.

» A parallel algorithm can make better use through, for example,
latency hiding.

@ Algorithmic advantages: Some problems are naturally parallel.
BUT: be skeptical, especially if SpeedUp > P.
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Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very
little communication or coordination.

@ Rendering images for computer-animation: each frame is
independent of all the others.

@ Brute-force searches for cryptography.

@ Analyzing large collections of images: astronomy surveys, facial
recognition, . ..

@ Monte-Carlo simulations: same model, run with different random
values.

@ Don’t be ashamed if your code is embarrassingly parallel:

» Embarrassingly parallel problems are great: you can get excellent
performance without heroic efforts.

» The only thing to be embarrassed about is if you don’t take
advantage of easy parallelism when it is available.
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The Work-Span Model

@ Model computation using a directed, acyclic, graph (DAG)
» Vertices correspond to operations
» Edges represent dependencies.
* |f there is an edge from Op; to Op;,
* then, operation Op; must be performed before Op;.
» A vertex with no incoming edge(s) is an initial vertex.
* The operation for an initial vertex can be done without waiting for any
other operation.
* The first operation(s) performed in any execution must correspond to
an initial vertex.
» A vertex with no outgoing edge(s) is a final vertex.
* The first operation(s) performed in any execution must correspond to
a final vertex.
@ Work and Span
» Work: the total number of vertices in the DAG.
* Work represents the sequential execution time.
» Span: the longest path from an initial vertex to a final vertex.
* Span represents the ideal parallel execution time with an unlimited
number of processors.
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The Work-Span Example

Ops:

x1 < Dbxb

X2 < 4xa

X3 4 x2%*C

x4 — x1 - x3

x5 < sqgrt (x4)

x6 <+ -b

X7 4 x6 + x5

x8 < 2xa

rl < x7/x8

X9 4 x6 - x5

r2 <+ x9/x8
Fill in the figure.
Work =
Span=_____
SpeedUp,, =

—b++/b2—4ac

{rn,rn} = 52

G C )

JoU00d
JoO00d

JoU00C
JoU000C
JoU00C
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Brent’s Lemma

@ Let Tp denote the time to evaluate a task with P processors.
» Ty = SequentialTime = Work.
» T, = UnlimitedParallelismTime = Span.

@ Then, Tp < 1 + T..
» Corollary for speed-up:

SpeedUpp = 4 Li _P

@ Why Brent’s Lemma is awesome:
» Brent’s lemma provides an upper bound on time and thus a lower
bound on speed-up.
» By using the work-span graph, Brent’s lemma accounts for
computations that have limited parallelism, even if they are not
purely sequential.
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Brent’'s Lemma: Proof

@ Construct the work-span DAG.
» Arrange the graph to have Span levels, where vertices in each level
have all of their incoming edges from earlier levels.
@ Time to execute on P processors:
» Execute levels one at a time.
» Let W, be the number of vertices at level .

Span Span
W, W,
o< Y| OECRE

i=1 i=1

IN
IN

Span
W;
> 5 | +Span

i=1

Work

+ Span

» This is an upper bound for T, because we ignored the possiblity
that some processors might be able to execute tasks in level i + 1
while other processors are completing the last tasks in level /.
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Lecture Summary

Causes of Performance Loss in Parallel Programs
@ Overhead
» Communication, slide 6.
» Synchronization, slide 10.
» Computation, slide 11.
» Extra Memory, slide 16.
@ Other sources of performance loss
» Non-parallelizable code, slide 19
» ldle Processors, slide 20.
» Resource Contention, slide 21.
@ Finishing up related topics
» Super-linear speed-up, slide 22
» Embarrassingly Parallel Problems, slide 23.
» Brent's Lemma, slide 26
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Preview

October 7: HW 2 earlybird (11:59pm).
October 9: HW 2 due (11:59pm).
October 10: Parallel Performance: Models
Homework: HWS3 released.
October 12: Energy, Power, and Time
October 15: Sorting Networks
October 17: The 0-1 Principle
October 18: HW 3 earlybird (11:59pm).
October 19: Midterm Review
Homework: HW3 due: 12 noon.
October 22: Midterm
October 24-26: Sorting (second half)
October 29-November 30: Data Parallelism with CUDA
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Review Questions (1 of 2)

@ What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.

@ Do programs running on a shared-memory computer have
communication overhead? Why or why not?

@ Do message passing program have synchronization overhead?
Why or why not?

@ Why might a parallel program have idle processes even when
there is work to be done?

@ What is super-linear speed-up?

» Give two common causes for super-linear speed-up.
» Is it likely to have speed-up that grows as O(Plog P) or faster?

@ What is an embarrassingly parallel problem? Give an example?
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Review Questions (1 of 2)

@ What is the work-span model?
@ Sketch the work-span DAG for 2 x 2 matrix multiplication.

@ For N x N matrix multiplication, how does work grow as a function
of N? For simplicity, you can assume that we use the simple,
brute-force algorithm.

@ For N x N matrix multiplication, how does span grow as a function
of N? You can make the same assumptions as for work.

@ What is SpeedUp_, for N x N matrix multiplication?

@ Use Brent’s Lemma to derive a lower bound for speed up for
N x N matrix multiplication when the number of processors, P is
at most v/'N.
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