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Outline

Overhead: work the parallel code has to do that the sequential
version avoids.

I Communication and Synchronization
I Extra computation, extra memory

Limited parallelism
I Code that is inherently sequential or has limited parallelism
I Idle processors
I Resource contention

Related topics
I Super-linear speed-up
I Embarrassingly Parallel Problems
I Brent’s Lemma
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Objectives

Learn about main causes of performance loss:
I Overhead
I Non-parallelizable code
I Idle processors
I Resource contention

See how these arise in message-passing, and shared-memory
code.
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Causes of Performance Loss

Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
In practice, this rarely happens because of:

I Overhead: work that the parallel program has to do that isn’t
needed in the sequential program.

I Non-parallelizable code: something that has to be done
sequentially.

I Idle processors: There’s work to do, but some processor are
waiting for something before they can work on it.

I Resource contention: Too many processors overloading a limited
resource.
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Overhead
Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.

Communication:
I The processes (or threads) of a parallel program need to

communicate.
I A sequential program has no interprocess communication.

Synchronization.
I The processes (or threads) of a parallel program need to

coordinate.
I This can be to avoid interference, or to ensure that a result is ready

before it’s used, etc.
I Sequential programs have a completely specified order of

execution: no synchronization needed.
Computation.

I Recomputing a result is often cheaper than sending it.
Memory Overhead.

I Each process may have its own copy of a data structure.
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Communication Overhead

total

leaf leaf leaf

tallytally tallytally

root

mid mid

leaf:

create list of N/P elements
send ’ready’ to parent
wait for ’go’
count 3s in the list
send total to parent

mid:

wait for tallies

wait for readies:

wait for go:
send gos to children

send ready to parent

send total to parent

root:

send gos

wait for totals

wait for readies
start timer

compute grand total
end timer
report results

total

leaf

In a parallel program, data must be sent between processors.
This isn’t a part of the sequential program.
The time to send and receive data is overhead.
Communication overhead occurs with both shared-memory and
message passing machines and programs.
Example: Reduce (e.g. Count 3s):

I Communication between processes adds time to execution.
I The sequential program doesn’t have this overhead.
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Communication with shared-memory

In a shared memory architecture:
I Each core has it’s own cache.
I The caches communicate to make sure that all references from

different cores to the same address look like there is one, common
memory.

I It takes longer to access data from a remote cache than from the
local cache. This creates overhead.

False sharing can create communication overhead even when
there is no logical sharing of data.

I This occurs if two processors repeatedly modify different locations
on the same cache line.
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Communication overhead: example
The Principles of Parallel Programming book considered an
example of Count 3s (in C, with threads), where there was a
global array, int count[P] where P is the number of threads.

I Each thread (e.g. thread i) initially sets its count, count[i] to 0.
I Each time a thread encounters a 3, it increments its element in the

array.
The parallel version ran much slower than the sequential one.

I Cache lines are much bigger than a single int. Thus, many entries
for the count array are on the same cache line.

I A processor has to get exclusive access to update the count for its
thread.

I This invalidates the copies held by the other processors.
I This produces lots of cache misses and a slow execution.

A better solution:
I Each thread has a local variable for its count.
I Each thread counts its threes using this local variable and copies its

final total to the entry in the global array.
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Communication overhead with message passing

The time to transmit the message through the network.
There is also a CPU overhead: the time set up the transmission
and the time to receive the message.
The context switches between the parallel application and the
operating system adds even more time.
Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.

I This has led to SMP implementations of Erlang, MPI, and other
message passing parallel programming frameworks.

I The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

I This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for multiple
processes on different machines in a cluster.
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Synchronization Overhead

Parallel processes must coordinate their operations.
I Example: access to shared data structures.
I Example: writing to a file.

For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.
For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.
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Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.

Redundant computation: it’s faster to recompute the same thing
on each processor than to broadcast.
Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.
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Sieve of Eratosthenes

To find all primes ≤ N:

1. Let MightBePrime = [2, 3, ..., N].
2. Let KnownPrimes = [].
3. while(MightBePrime 6= []) do

% Loop invariant: KnownPrimes contains all primes less than the
% smallest element of MightBePrime, and MightBePrime
% is in ascending order. This ensure that the first element of
% MightBePrime is prime.

3.1. Let P = first element of MightBePrime.
3.2. Append P to KnownPrimes.
3.3. Delete all multiples of P from MightBePrime.
4. end

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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Prime-Sieve in Erlang

% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->
do primes([], lists:seq(2, N)).

% invariants of do primes(Known, Maybe):
% All elements of Known are prime.
% No element of Maybe is divisible by any element of Known.
% lists:reverse(Known) ++ Maybe is an ascending list.
% Known ++ Maybe contains all primes ≤ N, where N is from p(N).
do primes(KnownPrimes, []) -> lists:reverse(KnownPrimes);
do primes(KnownPrimes, [P | Etc]) ->
do primes([P | KnownPrimes],

lists:filter(fun(E) -> (E rem P) /= 0 end, Etc)).
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A More Efficient Sieve

If N is composite, then it has at least one prime factor that is at
most

√
N.

This means that once we’ve found a prime that is ≥
√

N, all
remaining elements of Maybe must be prime.
Revised code:
% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->
do primes([], lists:seq(2, N), trunc(math:sqrt(N))).

do primes(KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->

do primes([P | KnownPrimes],
lists:filter(fun(E) -> (E rem P) /= 0 end, Etc), RootN);

do primes(KnownPrimes, Maybe, RootN) ->
lists:reverse(KnownPrimes, Maybe).
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Prime-Sieve: Parallel Version

Main idea
I Find primes from 1 . . .

√
N.

I Divide
√

N + 1 . . .N evenly between processors.
I Have each processor find primes in its interval.

We can speed up this program by having each processor compute
the primes from 1 . . .

√
N.

I Why does doing extra computation make the code faster?
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Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

Example: the parallel sieve: each process had its own copy of the
first
√

N primes.
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Overhead: Summary
Overhead is loss of performance due to extra work that the parallel program
does that is not performed by the sequential version. This includes:

Communication: parallel processes need to exchange data. A
sequential program only has one process; so it doesn’t have this
overhead.
Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order. For a sequential program, this ordering is
provided by the program itself.
Extra Computation:

I Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

I Sometimes the best parallel algorithm is a different algorithm than
the sequential version and the parallel one performs more
operations.

Extra Memory: Data structures may be replicated in several
different processes.
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Limited Parallelism

Sometimes, we can’t keep all of the processors busy doing useful
work.

Non-parallelizable code
The dependency graph for operations is narrow and deep.
Idle processors
There is work to do, but it hasn’t been assigned to an idle
processor.
Resource contention
Several processes need exclusive access to the same resource.
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Non-parallelizable Code

Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)
length++;

I Must dereference each p->next before it can dereference the next
one.

I Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

Searching a binary tree
I Requires 2k processes to get factor of k speed-up.
I Not practical in most cases.
I Again, could consider using another data structure.

Interpreting a sequential program.
Finite state machines.
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Idle Processors

There is work to do, but processors are idle.
Start-up and completion costs.
Work imbalance.
Communication delays.

Greenstreet Performance Loss CpSc 418 – Oct. 5, 2018 20 / 31

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_5
https://en.wikipedia.org/wiki/2018


Resource Contention

.
Processors waiting for a limited resource.
It’s easy to change a compute-bound task into an I/O bound one
by using parallel programming.
Or, we run-into memory bandwidth limitations:

I Processing cache-misses.
I Communication between CPUs and co-processors.

Network bandwidth.
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Super-Linear Speedup

Sometimes you win – SpeedUp > P. ,
But if that is true, wouldn’t the best sequential algorithm be to
simulate P workers by time-sharing a single processor?

I Probably not: Time-sharing has overhead.
Memory: a common explanation

I P machines have more main memory (DRAM)
I and more cache memory and registers (total)
I and more I/O bandwidth, . . .

Multi-threading: another common explanation
I The sequential algorithm cannot full utilize each CPU’s parallel

capabilities.
I A parallel algorithm can make better use through, for example,

latency hiding.

Algorithmic advantages: Some problems are naturally parallel.
BUT: be skeptical, especially if SpeedUp � P.
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Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very
little communication or coordination.

Rendering images for computer-animation: each frame is
independent of all the others.
Brute-force searches for cryptography.
Analyzing large collections of images: astronomy surveys, facial
recognition, . . .
Monte-Carlo simulations: same model, run with different random
values.
Don’t be ashamed if your code is embarrassingly parallel:

I Embarrassingly parallel problems are great: you can get excellent
performance without heroic efforts.

I The only thing to be embarrassed about is if you don’t take
advantage of easy parallelism when it is available.
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The Work-Span Model
Model computation using a directed, acyclic, graph (DAG)

I Vertices correspond to operations
I Edges represent dependencies.

F If there is an edge from Opi to Opj ,
F then, operation Opi must be performed before Opj .

I A vertex with no incoming edge(s) is an initial vertex.
F The operation for an initial vertex can be done without waiting for any

other operation.
F The first operation(s) performed in any execution must correspond to

an initial vertex.
I A vertex with no outgoing edge(s) is a final vertex.

F The first operation(s) performed in any execution must correspond to
a final vertex.

Work and Span
I Work: the total number of vertices in the DAG.

F Work represents the sequential execution time.
I Span: the longest path from an initial vertex to a final vertex.

F Span represents the ideal parallel execution time with an unlimited
number of processors.
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The Work-Span Example

{r1, r2} =
−b±
√

b2−4ac
2a

Ops:
x1 ← b*b
x2 ← 4*a
x3 ← x2*c
x4 ← x1 - x3
x5 ← sqrt(x4)
x6 ← -b
x7 ← x6 + x5
x8 ← 2*a
r1 ← x7/x8
x9 ← x6 - x5
r2 ← x9/x8

Fill in the figure.

Work =

Span =

SpeedUp∞ =

x1
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Brent’s Lemma

Let TP denote the time to evaluate a task with P processors.
I T1 = SequentialTime = Work.
I T∞ = UnlimitedParallelismTime = Span.

Then, TP ≤ T1
P + T∞.

I Corollary for speed-up:

SpeedUpP = T1
TP
≥ T1

T1
P +T∞

= P
1+ T∞

T1
P

Why Brent’s Lemma is awesome:
I Brent’s lemma provides an upper bound on time and thus a lower

bound on speed-up.
I By using the work-span graph, Brent’s lemma accounts for

computations that have limited parallelism, even if they are not
purely sequential.
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Brent’s Lemma: Proof
Construct the work-span DAG.

I Arrange the graph to have Span levels, where vertices in each level
have all of their incoming edges from earlier levels.

Time to execute on P processors:
I Execute levels one at a time.
I Let Wi be the number of vertices at level i .

Tp ≤
Span∑
i=1

⌈
Wi

P

⌉
≤

Span∑
i=1

Wi

P
+ 1

=

Span∑
i=1

Wi

P

+ Span =
Work

P
+ Span

=
T1

P
+ T∞

I This is an upper bound for Tp because we ignored the possiblity
that some processors might be able to execute tasks in level i + 1
while other processors are completing the last tasks in level i .
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Lecture Summary

Causes of Performance Loss in Parallel Programs
Overhead

I Communication, slide 6.
I Synchronization, slide 10.
I Computation, slide 11.
I Extra Memory, slide 16.

Other sources of performance loss
I Non-parallelizable code, slide 19
I Idle Processors, slide 20.
I Resource Contention, slide 21.

Finishing up related topics
I Super-linear speed-up, slide 22
I Embarrassingly Parallel Problems, slide 23.
I Brent’s Lemma, slide 26
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Preview

October 7: HW 2 earlybird (11:59pm).
October 9: HW 2 due (11:59pm).
October 10: Parallel Performance: Models

Homework: HW3 released.
October 12: Energy, Power, and Time
October 15: Sorting Networks
October 17: The 0-1 Principle
October 18: HW 3 earlybird (11:59pm).
October 19: Midterm Review

Homework: HW3 due: 12 noon.
October 22: Midterm
October 24-26: Sorting (second half)
October 29-November 30: Data Parallelism with CUDA
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Review Questions (1 of 2)

What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.
Do programs running on a shared-memory computer have
communication overhead? Why or why not?
Do message passing program have synchronization overhead?
Why or why not?
Why might a parallel program have idle processes even when
there is work to be done?
What is super-linear speed-up?

I Give two common causes for super-linear speed-up.
I Is it likely to have speed-up that grows as O(P log P) or faster?

What is an embarrassingly parallel problem? Give an example?
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Review Questions (1 of 2)

What is the work-span model?
Sketch the work-span DAG for 2× 2 matrix multiplication.
For N × N matrix multiplication, how does work grow as a function
of N? For simplicity, you can assume that we use the simple,
brute-force algorithm.
For N × N matrix multiplication, how does span grow as a function
of N? You can make the same assumptions as for work.
What is SpeedUp∞ for N × N matrix multiplication?
Use Brent’s Lemma to derive a lower bound for speed up for
N × N matrix multiplication when the number of processors, P is
at most

√
N.
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