
Computer Architecture Review

Mark Greenstreet

CpSc 418 – September 28, 2018

A microcoded machine
A pipelined machine: RISC
Superscalars and the memory bottleneck

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 1 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Objectives

Pipelining review
I Pipelining is parallel execution.
I The machine is supposed to appear (nearly) sequential.
I Tntroduce the ideas of hazards and dependencies.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 2 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Pipelined instruction execution

Registers

Instr.
Cache

Data
Cache

data data data

Data

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

datadata

op1

op2

addr addr

addr

rs2

Address

decode MEM

MEM A Pipelined (RISC) CPU

rdst

jr

rs1

Successive instructions in each stage
When instruction i in ifetch, instruction i-1 in decode, . . .
Allows throughput of one instruction per cycle.
Favors simple instructions that execute on a single pass through
the pipeline.
I This is known as RISC: “Reduced Instruction Set Computer”
I A modern x86 is CISC on the outside, but RISC on the inside.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 3 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

What about Dependencies?

Multiple-instructions are in the pipeline at the same time.
An instruction starts before all of its predecessors have completed.
Data hazards occur if
I an instruction can read a different value than would have

been read with a sequential execution of instructions,
I or if a register or memory location is left holding a different

value than it would have had in a sequential execution.
Control hazards occurs if
I an instruction is executed that would not have been executed

in a sequential execution.
I This is because the instruction “depends” on a jump or

branch that hasn’t finished in time.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 4 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Handling Hazards

Bypass: If an instruction has a result that a later instruction needs,
the earlier instruction can provide that result directly without
waiting to go through the register file.
Move common operations early:
I Decide branches in decode stage
I ALU operations in the stage after decode
I Memory reads take longer, but they happen less often.

Let the compiler deal with it
If nothing else helps, stall.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 5 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

RISC summary

without pipelining, a CPU typically takes 5+ clock-cycles per
instruction.
the RISC machine takes 1 clock-cycle per instruction – in the best
case:
I There can be stalls due to cache misses,
I unfilled delay slots, or
I multi-cycle operations.

Can we break the one-cycle-per instruction barrier?

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 6 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Rules for executing instructions

A programmer understands a process or thread as executing a
sequence instructions.
I The ordering of instructions in this sequence is called

program order
I The pgrogram should execute as if instructions are executed

in program order.
Hardware can get better performance by re-ordering instructions
and executing instructions in parallel.
The hardware must observe dependencies

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 7 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Dependencies
Let’s say that we have instructions inst i and inst j where i and j are there
indices in program-order execution, and i <.
We say that instruction j depends on instruction i if
I Read-After-Write (RAW): inst j reads a register or memory location

written by inst i . We need inst j to read the right value and not get a
stale value.

I Write-After-Read (WAR): inst j writes a location read by inst i . We need
inst i to read the right value and not get a value “from the future.”

I Write-After-Write (WAR): inst i and inst j write the same location. inst j
must be the last write so that subsequent instructions see the correct
value.

I Control dependencies: inst i is a control flow instruction, for example,
a branch, jump, function call, or trap. We need to execute the correct
instructions.

To ensure correct execution, if inst j depends on inst i , then inst j must exe-
cute after inst j .
I Unless we can apply some technique for removing the dependency.

We’ll cover this in subsequent slides.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 8 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Matrix Multiplication and Performance

for(int i = 0; i < M; i++)
for(int j = 0; j < N; j++)

for(int k = 0; k < L; k++)
c[i,j] += a[i,k]*b[k,j];

Focus on the innermost loop: for(k . . .)

I Why?

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 9 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

The Inner Loop: Dot Product

C
for(int k = 0; k < L; k++)

c[i,j] += a[i,k]*b[k,j];

Assembly (sketch):
LOOP:

a val ← *a ptr # load
a ptr ← a ptr + a stride # a stride = sizeof(double)
b val ← *b ptr # load
b ptr ← b ptr + b stride # b stride = N*sizeof(double)
x ← a val * b val # floating point multiply
sum ← sum + x # floating point add
if a ptr < a max goto LOOP # conditional branch

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 10 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Dot-Product, The Dependency Graph

k=1:

WAR

b_val
k=0

WAR

a_val
k=0

RAW RAW

a_ptr
k=0

if
k=0

RAW RAW

x
k=0

sum
k=0

b_ptr
k=0

WAR

b_val
k=1

WAR

a_val
k=1

RAW RAW

a_ptr
k=1

if
k=1

RAW RAW

x
k=1

sum
k=1

b_ptr
k=1

a_val <− *a_ptr

a_ptr <− a_ptr + a_stride

b_val <− *b_ptr

b_ptr <− b_ptr + b_stride

x <− a_val * b_val

sum <− sum + x

if a_ptr < a_max

a_val <− *a_ptr

a_ptr <− a_ptr + a_stride

b_val <− *b_ptr

b_ptr <− b_ptr + b_stride

x <− a_val * b_val

sum <− sum + x

if a_ptr < a_max

RAW

ControlControl

RAW

RAW

k=0:

An instruction can execute as soon as all instructions that it
depends on have completed.
This allows us to execute the 7 instruction loop in 3 cycles (with
very idealized hardware).

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 11 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

x2 + 2: Is it parallel?

% y[i]← x[i]2 + 2, for i ∈ [0..3]
tmp1 = x[0];
tmp2 = tmp1*tmp1;
y[0] = tmp2+1;
tmp1 = x[1];
tmp2 = tmp1*tmp1;
y[1] = tmp2+1;
tmp1 = x[2];
tmp2 = tmp1*tmp1;
y[2] = tmp2+1;
tmp1 = x[3];
tmp2 = tmp1*tmp1;
y[3] = tmp2+1;

WAR

RAW

RAW

tmp1=x[0]

tmp2=tmp1*tmp1

y[0]=tmp2+2

WAW

RAW

RAW

tmp1=x[1]

tmp2=tmp1*tmp1

y[1]=tmp2+2

WAW

WAR

WAR WAW

RAW

RAW

tmp1=x[2]

tmp2=tmp1*tmp1

y[2]=tmp2+2

WAW

WAR

WAR WAW

RAW

RAW

tmp1=x[3]

tmp2=tmp1*tmp1

y[3]=tmp2+2

WAW

WAR

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 12 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

The Dependency Graph (zoom)

WAR

RAW

RAW

tmp1=x[0]

tmp2=tmp1*tmp1

y[0]=tmp2+2

WAW

RAW

RAW

tmp1=x[1]

tmp2=tmp1*tmp1

y[1]=tmp2+2

WAW

WAR

WAR WAW

RAW

RAW

tmp1=x[2]

tmp2=tmp1*tmp1

y[2]=tmp2+2

WAW

WAR

WAR WAW

RAW

RAW

tmp1=x[3]

tmp2=tmp1*tmp1

y[3]=tmp2+2

WAW

WAR

Reusing tmp1 and tmp2 is creating lots of WAR and WAW dependencies.
Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 13 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

False Dependencies

WAR: If we had a fresh variable (register in the hardware), we
could have the write go to a new register and not interfere with the
earlier (in program order) read.
Likewise for WAW.

y[3]=t2_3+2

RAW

RAW

t1_0=x[0]

t2_0=t1_0*t1_0

y[0]=t2_0+2

RAW

RAW

t1_2=x[2]

t2_2=t1_2*t1_2

y[2]=t2_2+2

RAW

RAW

t1_1=x[1]

t2_1=t1_1*t1_1

y[1]=t2_1+2

RAW

RAW

t1_3=x[3]

t2_3=t1_3*t1_3

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 14 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Register Renaming

After Decoding

a_ptr
a_val
b_ptr
b_val

b_stride
x

sum

physical

registers

$3
$4
$5
$6
$7
$8
$9
$10

bptr <− bptr+bstride

logical

registers

...

$0
$1
$2

a_ptr
a_val
b_ptr
b_val

b_stride
x

sum

physical

registers

$3
$4
$5
$6
$7
$8
$9

$10

$7 <− $2 + $4

logical

registers

...

$0
$1
$2

Before Decoding

When an instruction is decoded
I The logical registers that it reads are bound to physical registers ac-

cording to the current register mapping.
I A fresh register is allocated for the register it writes. This register is

marked as busy.
When an instruction updates its destination register, it changes it from
“busy” to “ready”.
An instruction can execute when all registers that it reads are “ready”.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 15 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Control Dependencies

If we use register renaming with our matrix-multiply (dot-product)
example:
I How many clock cycles per iteration?

Now, the bottleneck is the control dependency for the for-loop
branch.
I For large matrices and/or vectors, the branch is taken “most

of the time”
Speculative execution
I Track statistics for branch outcomes.
I Speculatively execute the more likely path.
I Roll-back if wrong.

2 Reset program counter.
2 Unwind register mappings back to the point of the

mispredicted branch.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 16 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Other stuff

Exceptions
Committing instructions and freeing registerrs

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 17 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Superscalar Processors

reorder

Float.−Point

MEM

reg.
map

status

IALU1

IALU2

LS

A Superscalar CPU

inst.

fetch

I$

decode

rename
&

Registers
Integer

D$

FP2

FP1

Issue Queues

buffer

Registers

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 18 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Superscalar Execution
Fetch several, W , instructions each cycle.
Decode them in parallel, and send them to issue queues for the
appropriate functional unit.
But what about dependencies?
I We need to make sure that data and control dependencies

are properly observed.
I Code should execute on a superscalar as if it were executing

on sequential, one-instruction-at-a-time machine.
I Data dependencies can be handled by “register renaming” –

this uses register indices to dynamically create the
dependency graph as the program runs.

I Control dependencies can be handled by “branch
speculation” – guess the branch outcome, and rollback if
wrong.

The opportunity to execute instructions in parallel is called
Instruction Level Parallelism, ILP.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 19 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

What superscalars are good at
Scientific computing:
I often successive loop iterations are independent
I the superscalar pipelines the loop
I Perform memory reads for loop i, while doing multiplications

for loop i-2, while doing additions for loop i-4, while storing the
results for loop i-5.

Commercial computing (databases, webservers, . . .)
I often have large data sets and high cache miss rates.
I the superscalar can find executable instructions after a cache

miss.
I if it encounters more misses, the CPU benefits from

pipelined memory accesses.
Burning lots of power
I many operations in a superscalar require hardware that

grows quadratically with W .
I basically, all instructions in a batch of W have to compare

there register indices with all of the other ones.
Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 20 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Superscalar Reality

Most general purpose CPUs (x86, Arm, Power, SPARC) are
superscalar.
Register renaming works very well:
Branch prediction is also very good, often > 90% accuracy.
I But, data dependent branches can cause very poor

performance.
Superscalar designs make multi-threading possible
I The features for executing multiple instruction in parallel work

well for mixing instructions from several threads or processes
– this is called “multithreading” (or “hyperthreading”, if you’re
from Intel).

I In practice, superscalars are often better at multithreading
than they are at extracting ILP from a sequential program.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 21 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Lynn Conway

Worked on first super-scalar processor design
at IBM.
Was subsequently fired from IBM. Why?
Worked as a programmer at Memorex for a
few years, and then went to Xerox PARC.
Collaborated with Carver Mead (Caltech) to
start the “VLSI revolution”
I Key idea was to apply principles of abstract

from computer science to integrated circuit
design.

I approach has completely transformed the in-
dustry and made large, multi-billion transistor
designs possible.

For more information, see:
http://ai.eecs.umich.edu/people/conway/
Photo from http://en.wikipedia.org/wiki/File:Lynn_Conway_July_2006.jpg

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 22 / 24

http://ai.eecs.umich.edu/people/conway/
http://en.wikipedia.org/wiki/File:Lynn_Conway_July_2006.jpg
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Why does it matter?
Role models matter
I If your a straight, white or asian, male in computer science,

2 then there are lots of people like you who can be role
models.

2 If you’re like me, you’ll often take this for granted, and not
even think of them as role models.

I The further you are from this “center-of-mass” of the field,
2 the sparser role models become,
2 and you may feel like you don’t fit in.
2 If so, please get the message from this that you’re not the

problem.
Lynn Conway has lived a remarkable life
I She’s made important contributions to computer architecture,

VLSI design, and robotics.
I She’s chosen to use her experiences to help others who are

facing similar challenges and discrimination.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 23 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

Review

How does a pipelined architecture execute instruction in parallel?
What are hazards?
What are dependencies?
What is multithreading.
For further reading on RISC:
“Instruction Sets and Beyond: Computers, Complexity, and Controversy”
R.P. Colwell, et al., IEEE Computer, vol. 18, no. 3,
I You can download the paper for free if your machine is on the

UBC network.
I If you are off-campus, you can use the library’s proxy.

Greenstreet Computer Architecture Review CpSc 418 – Sept. 28, 2018 24 / 24

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1663000&tag=1
http://services.library.ubc.ca/off-campus-access/connect-from-home/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_28
https://en.wikipedia.org/wiki/2018

