
Reduce – The Pattern

Mark Greenstreet

CpSc 418 – September 14, 2018

Surviving this Course
The Reduce Pattern
Examples

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 1 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Survival: what I learned from piazza

From Piazza in a previous term: “. . . HW1 Q3 took me 3–4 hours”.
Yikes! If one question takes you 3–4 hours, then I’ll guess 12 or
more hours for the assignment.
Add lectures, reading, and a PIKA, and we’re looking at 20 hours
for the week.
If you’re taking five classes, that’s 100 hours/week – no time for
eating, sleeping, brushing your teeth, or parties.
Not sustainable, Brian fails.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 2 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

How to survive
Piazza lets me know that there might be a problem, but it doesn’t
let me know if there is a problem.

I Is everyone drowning in the workload?
I Are there just a few students who need some help to catch-up?
I Are there just a few students who will complain about the workload

no matter how easy it is?
The solution: office hours and tutorial

I You outnumber the instructors and TAs.
I Use this to your advantage.
I If it is taking you 3-4 hours to solve one HW problem, you can save

time by going to office hours or tutorial and asking questions.
This solves the instructors dilemma

I If 80% of the class is overwhelmed, I’ll have 20–30 or more
students at office hours. I’ll find out where you’re stuck, and I’ll
adjust the course to match.

I If a few of you need a bit of help to get going with Erlang, parallel
programming, timing measurements, or other stuff, we’ll get it taken
care of.

I Either way, if you are finding the workload too high, go to office
hours and/or tutorials.

I You outnumber the instructors and TAs – we’ll adjust.Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 3 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Objectives

Understand the reduce pattern.
Solve simple problems using reduce.
Understand how to write Combine functions.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 4 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Reduce Review

The basic idea:
I We have a task that can be divided over P processes.
I We need to combine the results from the sub-tasks to get the main

result.
I This involved communication between processes.

F Communication is slow. We write λ for the communication time.
F If each worker sends its result to the master process, this takes λP

time.
F If the workers combine their results using a tree, it takes λ log2 P time.

I Reduce reduces the communication overhead.
F Parallel approaches can be used efficiently for smaller problems

using reduce than using the brute-force approach.
F If N is the problem size, we can make effective use of a bigger P for a

smaller N.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 5 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Beyond Poetry

Some examples we will consider:
Finding the largest element in a list or array distributed across P
processes.
Finding the sum of the elements in a list or array distributed
across P processes.
Finding the average of the elements in a list or array distributed
across P processes.
Removing adjacent duplicates (see PIKA2).

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 6 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Associative (and Commutative) Operators

An operation is associative if we can re-arrange the parentheses
while preserving the left-to-right order of the operands and get the
same result.

I Addition is associative if you’re a mathematician.
I Addition is almost associative if you’re working with floating point

numbers.
I Addition is associative if you’re working with integers.
I Similar remarks for multiplication, finding the maximum, and many

other operations.
What about commutative?

I We’re at a university, so “associative and commutative” just rolls off
the tongue because it makes us sound so mathematical and
therefore scholarly.

I An operator, ◦ is commutative if A ◦ B = B ◦ A for all A and B.
I Commutative is nice because:

F We can re-order the operations however we like.
F We don’t need to preserve left-to-right order.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 7 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Do we care about commutativity?

No: while being able to re-order more may seem like a good idea,
e.g., use results as they become available, in practice this often
isn’t worth it.

I Figuring out which results are available requires synchronization.
I This incurs the λ cost for global actions.

Maybe: if the operator is associative but not commutative, then
we care about the left-to-right order of the data.

I The summaries that we pass through combine will say something
about the left-to-right order.

I Often these summaries have the form of:
{LeftSummary, OverallSummary, RightSummary}

I Reduce tends to be simpler to implement when the function is
associative and commutative.

Yes: if the underlying hardware shuffles the data ordering (we’ll
see this in CUDA), then we are much happier if the operation for
the reduce is commutative.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 8 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: the code

We kind of rushed it on Wednesday. Let’s go through the details
count3s(WorkerTree, Key) ->

wtree:reduce(WorkerTree,
fun(ProcState) -> count3s leaf(ProcState, Key) end,
fun(Left, Right) -> count3s combine(Left, Right) end

).

count3s leaf(ProcState, Key) ->
MyList = workers:get(ProcState, Key),
length([E || E <- MyList, E =:= 3]).

count3s combine(Left, Right) -> Left+Right.

The code is available at reduce intro.erl.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 9 / 16

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/reduce_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s try it
bash$ erl
Erlang/OTP 19 blah blah blah ...
Eshell V8.3 (abort with ∧G)
1> c(reduce intro).
{ok,reduce intro}
2> W = wtree:create(8).

** exception error: undefined function wtree:create/1
% We need to tell Erlang the path to the course library.
% I’ll show this for running Erlang on the ugrad.cs.ubc.ca machines.
3> code:add path("/home/c/cs418/public html/resources/erl").
true
4> W = wtree:create(8).
% wtree:create returns a list of pids
[<0.71.0>,<0.72.0>,<0.73.0>,<0.74.0>,<0.75.0>,<0.76.0>,<0.77.0>,<0.78.0>]
% Create a list of 100 random integers in [1,10]. The list is
% distributed over the workers of W and associated with the key data.
5> workers:rlist(W, 100, 10, data).
ok
6> reduce intro:count3s(W, data).
4
% Let’s check
7> Data = lists:append(workers:retrieve(W, data)).
[6,10,3,2,2,9,2,9,8,4,5,8,4,1,4,2,2,8,1,1,1,8,4,2,2,6,8,8,3|...]
8> length([E || E <- Data, E =:= 3]). 4 % looks good

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 10 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

The course library

If you are on a ugrad.cs.ubc.ca linux machine:
I From the Erlang shell:

code:add path("/home/c/cs418/public html/resources/erl").
I Or, add the following to your ~/.bashrc.

function erl {
/usr/bin/erl erl -eval ’code:add path("/home/c/cs418/public html/resources/erl")’ $* }

and you will have the path set-up every time you run Erlang.

Do try this at home: download the library from:
http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/erl.tgz

You will need to compile the modules. I should add a Makefile
to the archive that does that for you.
The library comes with documentation.

http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/doc/index.html

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 11 / 16

http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s time it (1 of 3)

We need a sequential version. See reduce examples.erl.

count3s(List) -> count3s tr(List, 0).
count3s tr([3 | Tl], Acc) -> count3s tr(Tl, Acc+1);
count3s tr([| Tl], Acc) -> count3s tr(Tl, Acc);

count3s tr([], Acc) -> Acc. count3s time(N values) -> % time the sequential version
Data = misc:rlist(N values, 10),
time it:t(fun() -> count3s(Data) end).

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 12 / 16

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/reduce_examples.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s time it (2 of 3)

We need timing measurement function:

count3s time(seq, N values) -> count3s time(N values);
count3s time(N workers, N values)
when is integer(N workers), N workers >= 0,

is integer(N values), N values >= 0 ->
% time the parallel version
WorkerTree = wtree:create(N workers),
workers:rlist(WorkerTree, N values, 10, data),
workers:retrieve(WorkerTree, fun() -> ok end), % make sure that rlist is done
T = time it:t(fun() -> count3s(WorkerTree, data) end),
wtree:reap(WorkerTree),
T.

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 13 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s time it (3 of 3)

N values = 1000000. Running on thetis.ugrad.cs.ubc.ca.

N workers Time (seconds) SpeedUp
seq 6.54e-3 1
2 3.83e-3 1.7
4 2.01e-3 3.25
8 1.40e-3 4.69
16 7.95e-4 8.23
32 5.27e-4 12.42
64 4.62-4 14.17

128 4.28-4 15.29
256 4.28-4 12.41

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 14 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Demystifying ProcState

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 15 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Generalizing Reduce: max

Greenstreet Reduce – The Pattern CpSc 418 – Sept. 14, 2018 16 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

