Reduce — The Pattern

Mark Greenstreet

CpSc 418 — September 14, 2018

@ Surviving this Course
@ The Reduce Pattern
@ Examples

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 1/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Survival: what | learned from piazza

From Piazza in a previous term: “... HW1 Q3 took me 3—4 hours”.

@ Yikes! If one question takes you 3—4 hours, then I'll guess 12 or
more hours for the assignment.

@ Add lectures, reading, and a PIKA, and we'’re looking at 20 hours
for the week.

@ If you're taking five classes, that’s 100 hours/week — no time for
eating, sleeping, brushing your teeth, or parties.

@ Not sustainable, Brian fails.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 2/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

How to survive

@ Piazza lets me know that there might be a problem, but it doesn’t
let me know if there is a problem.

» Is everyone drowning in the workload?

» Are there just a few students who need some help to catch-up?

» Are there just a few students who will complain about the workload
no matter how easy it is?

@ The solution: office hours and tutorial

» You outnumber the instructors and TAs.

» Use this to your advantage.

» If it is taking you 3-4 hours to solve one HW problem, you can save
time by going to office hours or tutorial and asking questions.

@ This solves the instructors dilemma

» If 80% of the class is overwhelmed, I'll have 20—30 or more
students at office hours. I'll find out where you're stuck, and I'll
adjust the course to match.

» If a few of you need a bit of help to get going with Erlang, parallel
programming, timing measurements, or other stuff, we’ll get it taken
care of.

» Either way, if you are finding the workload too high, go to office

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 3/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Objectives

@ Understand the reduce pattern.
@ Solve simple problems using reduce.
@ Understand how to write Combine functions.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 4/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Reduce Review

@ The basic idea:

» We have a task that can be divided over P processes.
» We need to combine the results from the sub-tasks to get the main
result.
» This involved communication between processes.
* Communication is slow. We write X for the communication time.

* |If each worker sends its result to the master process, this takes AP
time.

* |f the workers combine their results using a tree, it takes X log, P time.
» Reduce reduces the communication overhead.
* Parallel approaches can be used efficiently for smaller problems
using reduce than using the brute-force approach.

* If N is the problem size, we can make effective use of a bigger P for a
smaller N.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 5/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Beyond Poetry

Some examples we will consider:
@ Finding the largest element in a list or array distributed across P
processes.

@ Finding the sum of the elements in a list or array distributed
across P processes.

@ Finding the average of the elements in a list or array distributed
across P processes.

@ Removing adjacent duplicates (see PIKA2).

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 6/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Associative (and Commutative) Operators

@ An operation is associative if we can re-arrange the parentheses
while preserving the left-to-right order of the operands and get the
same result.

» Addition is associative if you're a mathematician.

» Addition is almost associative if you’re working with floating point
numbers.

» Addition is associative if you're working with integers.

» Similar remarks for multiplication, finding the maximum, and many
other operations.

@ What about commutative?

» We're at a university, so “associative and commutative” just rolls off
the tongue because it makes us sound so mathematical and
therefore scholarly.

» An operator, o is commutative if Ao B= Bo Aforall Aand B.

» Commutative is nice because:

* We can re-order the operations however we like.
* We don’t need to preserve left-to-right order.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 7/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Do we care about commutativity?

@ No: while being able to re-order more may seem like a good idea,
e.g., use results as they become available, in practice this often
isn’t worth it.

» Figuring out which results are available requires synchronization.
» This incurs the \ cost for global actions.
@ Maybe: if the operator is associative but not commutative, then
we care about the left-to-right order of the data.

» The summaries that we pass through combine will say something
about the left-to-right order.
» Often these summaries have the form of:

{LeftSummary, OverallSummary, RightSummary}
» Reduce tends to be simpler to implement when the function is
associative and commutative.
@ Yes: if the underlying hardware shuffles the data ordering (we’ll
see this in CUDA), then we are much happier if the operation for
the reduce is commutative.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 8/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: the code

@ We kind of rushed it on Wednesday. Let’s go through the details

count3s (WorkerTree, Key) —>
wtree:reduce (WorkerTree,
fun (ProcState) -> count3s_leaf (ProcState, Key) end,
fun (Left, Right) -> count3s_combine (Left, Right) end
) .

count3s_leaf (ProcState, Key) —>
MyList = workers:get (ProcState, Key),
length([E || E <= MyList, E =:= 3]).

count3s_combine (Left, Right) -> Left+Right.
@ The code is available at reduce_intro.erl.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 9/16

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/reduce_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s try it

bash$ erl

Erlang/OTP 19 blah blah blah

Eshell V8.3 (abort with AG)

1> c(reduce_intro) .

{ok, reduce_intro}

2> W = wtree:create(8).

*x exception error: undefined function wtree:create/1l

We need to tell Erlang the path to the course library.

I'll show this for running Erlang on the ugrad. cs.ubc. ca machines.

3> code:add-path ("/home/c/cs418/public_html/resources/erl")
true

4> W = wtree:create(8).

% wtree create returns a list of pids
[<0.71.0>,<0.72.0>,<0.73.0>,<0.74.0>,<0.75.0>,<0.76.0>,<0.77.0>, <l
% Create a list of 100 random integers in [1,10]. The list is

% distributed over the workers of W and associated with the key data.

5> workers:rlist (w, 100, 10, data).

ok

6> reduce_intro:count3s (W, data).

%
3
)

IS

% Let’s check

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 10/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

The course library

@ If you are on a ugrad.cs.ubc. ca linux machine:

» From the Erlang shell:
code:add_path ("/home/c/cs418/public_html/resources
» Or, add the following to your ~/ .bashrc.

function erl {
/usr/bin/erl erl -eval ’code:add-path("/home/c/cs418/¢

and you will have the path set-up every time you run Erlang.
@ Do try this at home: download the library from:
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/
You will need to compile the modules. | should add a Makefile
to the archive that does that for you.
@ The library comes with documentation.
http://www.ugrad.cs.ubc.ca/~csd418/resources/erl/

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 11/16

http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s time it (1 of 3)

We need a sequential version. See reduce_examples.erl.

count3s (List) -> count3s_tr (List, 0).

count3s_tr([3 | Tl], Acc) -> count3s_tr(Tl, Acc+l);

count3s_tr([- | T1l], Acc) —-> count3s_tr(Tl, Acc);

count3s_tr([], Acc) —-> Acc. count3s_time (N_values) -> % time the se

Data = misc:rlist (N_values, 10),
time_it:t (fun() —-> count3s(Data) end).

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 12/16

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/reduce_examples.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s time it (2 of 3)

We need timing measurement function:

count3s_time (seq, N_values) -> count3s_time (N_values);
count3s_time (N.workers, N_values)
when is_integer (N.workers), N.workers >= 0,
is_integer (N.values), N_values >= 0 —->
% time the parallel version
WorkerTree = wtree:create (N_.workers),
workers:rlist (WorkerTree, N_values, 10, data),

workers:retrieve (WorkerTree, fun(.) —-> ok end), % make sure that rli
T = time_it:t (fun() -> count3s (WorkerTree, data) end),
wtree:reap (WorkerTree),

T.

Greenstreet Reduce — The Pattern CpSc 418 — Sept. 14,2018 13/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Count 3s: Let’s time it (3 of 3)

N_values = 1000000. Running on thetis.ugrad.cs.ubc.ca.

N.workers | Time (seconds) | SpeedUp |

seq 6.54e-3 1
2 3.83e-3 1.7

4 2.01e-3 3.25

8 1.40e-3 4.69
16 7.95e-4 8.23
32 5.27e-4 12.42
64 4.62-4 14.17
128 4.28-4 15.29
256 4.28-4 12.41

Greenstreet Reduce — The Pattern

CpSc 418 — Sept. 14,2018

14/16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Demystifying ProcState

Greenstreet Reduce — The Pattern

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

Generalizing Reduce: max

Greenstreet Reduce — The Pattern

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_14
https://en.wikipedia.org/wiki/2018

