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Survival: what I learned from piazza

From Piazza in a previous term: “. . . HW1 Q3 took me 3–4 hours”.
Yikes! If one question takes you 3–4 hours, then I’ll guess 12 or
more hours for the assignment.
Add lectures, reading, and a PIKA, and we’re looking at 20 hours
for the week.
If you’re taking five classes, that’s 100 hours/week – no time for
eating, sleeping, brushing your teeth, or parties.
Not sustainable, Brian fails.
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How to survive
Piazza lets me know that there might be a problem, but it doesn’t
let me know if there is a problem.

I Is everyone drowning in the workload?
I Are there just a few students who need some help to catch-up?
I Are there just a few students who will complain about the workload

no matter how easy it is?
The solution: office hours and tutorial

I You outnumber the instructors and TAs.
I Use this to your advantage.
I If it is taking you 3-4 hours to solve one HW problem, you can save

time by going to office hours or tutorial and asking questions.
This solves the instructors dilemma

I If 80% of the class is overwhelmed, I’ll have 20–30 or more
students at office hours. I’ll find out where you’re stuck, and I’ll
adjust the course to match.

I If a few of you need a bit of help to get going with Erlang, parallel
programming, timing measurements, or other stuff, we’ll get it taken
care of.

I Either way, if you are finding the workload too high, go to office
hours and/or tutorials.
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Objectives

Understand the reduce pattern.
Solve simple problems using reduce.
Understand how to write Combine functions.
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Reduce Review

The basic idea:
I We have a task that can be divided over P processes.
I We need to combine the results from the sub-tasks to get the main

result.
I This involved communication between processes.

F Communication is slow. We write λ for the communication time.
F If each worker sends its result to the master process, this takes λP

time.
F If the workers combine their results using a tree, it takes λ log2 P time.

I Reduce reduces the communication overhead.
F Parallel approaches can be used efficiently for smaller problems

using reduce than using the brute-force approach.
F If N is the problem size, we can make effective use of a bigger P for a

smaller N.
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Beyond Poetry

Some examples we will consider:
Finding the largest element in a list or array distributed across P
processes.
Finding the sum of the elements in a list or array distributed
across P processes.
Finding the average of the elements in a list or array distributed
across P processes.
Removing adjacent duplicates (see PIKA2).
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Associative (and Commutative) Operators

An operation is associative if we can re-arrange the parentheses
while preserving the left-to-right order of the operands and get the
same result.

I Addition is associative if you’re a mathematician.
I Addition is almost associative if you’re working with floating point

numbers.
I Addition is associative if you’re working with integers.
I Similar remarks for multiplication, finding the maximum, and many

other operations.
What about commutative?

I We’re at a university, so “associative and commutative” just rolls off
the tongue because it makes us sound so mathematical and
therefore scholarly.

I An operator, ◦ is commutative if A ◦ B = B ◦ A for all A and B.
I Commutative is nice because:

F We can re-order the operations however we like.
F We don’t need to preserve left-to-right order.
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Do we care about commutativity?

No: while being able to re-order more may seem like a good idea,
e.g., use results as they become available, in practice this often
isn’t worth it.

I Figuring out which results are available requires synchronization.
I This incurs the λ cost for global actions.

Maybe: if the operator is associative but not commutative, then
we care about the left-to-right order of the data.

I The summaries that we pass through combine will say something
about the left-to-right order.

I Often these summaries have the form of:
{LeftSummary, OverallSummary, RightSummary}

I Reduce tends to be simpler to implement when the function is
associative and commutative.

Yes: if the underlying hardware shuffles the data ordering (we’ll
see this in CUDA), then we are much happier if the operation for
the reduce is commutative.
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Count 3s: the code

We kind of rushed it on Wednesday. Let’s go through the details
count3s(WorkerTree, Key) ->

wtree:reduce(WorkerTree,
fun(ProcState) -> count3s leaf(ProcState, Key) end,
fun(Left, Right) -> count3s combine(Left, Right) end

).

count3s leaf(ProcState, Key) ->
MyList = workers:get(ProcState, Key),
length([E || E <- MyList, E =:= 3]).

count3s combine(Left, Right) -> Left+Right.

The code is available at reduce intro.erl.
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Count 3s: Let’s try it
bash$ erl
Erlang/OTP 19 blah blah blah ...
Eshell V8.3 (abort with ∧G)
1> c(reduce intro).
{ok,reduce intro}
2> W = wtree:create(8).

** exception error: undefined function wtree:create/1
% We need to tell Erlang the path to the course library.
% I’ll show this for running Erlang on the ugrad.cs.ubc.ca machines.
3> code:add path("/home/c/cs418/public html/resources/erl").
true
4> W = wtree:create(8).
% wtree:create returns a list of pids
[<0.71.0>,<0.72.0>,<0.73.0>,<0.74.0>,<0.75.0>,<0.76.0>,<0.77.0>,<0.78.0>]
% Create a list of 100 random integers in [1,10]. The list is
% distributed over the workers of W and associated with the key data.
5> workers:rlist(W, 100, 10, data).
ok
6> reduce intro:count3s(W, data).
4
% Let’s check
7> Data = lists:append(workers:retrieve(W, data)).
[6,10,3,2,2,9,2,9,8,4,5,8,4,1,4,2,2,8,1,1,1,8,4,2,2,6,8,8,3|...]
8> length([E || E <- Data, E =:= 3]). 4 % looks good
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The course library

If you are on a ugrad.cs.ubc.ca linux machine:
I From the Erlang shell:

code:add path("/home/c/cs418/public html/resources/erl").
I Or, add the following to your ~/.bashrc.

function erl {
/usr/bin/erl erl -eval ’code:add path("/home/c/cs418/public html/resources/erl")’ $* }

and you will have the path set-up every time you run Erlang.

Do try this at home: download the library from:
http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/erl.tgz

You will need to compile the modules. I should add a Makefile
to the archive that does that for you.
The library comes with documentation.

http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/doc/index.html
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Count 3s: Let’s time it (1 of 3)

We need a sequential version. See reduce examples.erl.

count3s(List) -> count3s tr(List, 0).
count3s tr([3 | Tl], Acc) -> count3s tr(Tl, Acc+1);
count3s tr([ | Tl], Acc) -> count3s tr(Tl, Acc);

count3s tr([], Acc) -> Acc. count3s time(N values) -> % time the sequential version
Data = misc:rlist(N values, 10),
time it:t(fun() -> count3s(Data) end).
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Count 3s: Let’s time it (2 of 3)

We need timing measurement function:

count3s time(seq, N values) -> count3s time(N values);
count3s time(N workers, N values)
when is integer(N workers), N workers >= 0,

is integer(N values), N values >= 0 ->
% time the parallel version
WorkerTree = wtree:create(N workers),
workers:rlist(WorkerTree, N values, 10, data),
workers:retrieve(WorkerTree, fun( ) -> ok end), % make sure that rlist is done
T = time it:t(fun() -> count3s(WorkerTree, data) end),
wtree:reap(WorkerTree),
T.
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Count 3s: Let’s time it (3 of 3)

N values = 1000000. Running on thetis.ugrad.cs.ubc.ca.

N workers Time (seconds) SpeedUp
seq 6.54e-3 1
2 3.83e-3 1.7
4 2.01e-3 3.25
8 1.40e-3 4.69
16 7.95e-4 8.23
32 5.27e-4 12.42
64 4.62-4 14.17

128 4.28-4 15.29
256 4.28-4 12.41
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Demystifying ProcState
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Generalizing Reduce: max
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