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Objectives

Understand how reduce combines values using a tree.
Describe the performance issues for reduce: trade-offs of time for
computation and time for communication
Describe 2 or 3 examples or reduce.
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CPSC 418 Poetry Competition

The competition:
I Everyone writes a poem.
I Everyone submits to poem to Mark (the contest judge).
I Mark reads all of the poems, compares them, selects the best

poem.
I The winner receives an original manuscript of the complete poems

of Li Bai, signed by the author.
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Sequential Time for the Poetry Competition

N students in the class.
trank to read and rank two poems.
Total time (N − 1)trank .
Works fine until N becomes so large that we can’t judge all the
poems in a reasonable amount of time.
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Parallel poetry: the procedure

winner
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clone_2
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clone_P

N/P
poems

N/P
poems

N/P
poems

N/P
poems

original

Mark

Clone P copies of Mark.
Each Mark-clone reads and ranks N/P poems and sends the best
poem to the original Mark.
The original Mark receives P candidates for the best poem, and
selects the best one.
The winner receives the prize.
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Parallel poetry: time

The time for each of the P clones to select the best poem out of
N/P:

The time from when all P clones start until all P clones finish:

The time for the original Mark to rank the P finalists:

Simplify this to get .

SpeedUp =
Tseq
Tpar

= .
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Bureaucratic Overhead

To satisfy UBC privacy policies, the messages between the
Mark-clones and the original mark must be sent in special
envelopes.
There’s lots of special procedure for handling these envelopes,
takes time λ to send or receive a message.
The original Mark receives P messages from the P clones. This
takes time λP.

The total time is now: .

SpeedUp =
Tseq
Tpar

= .

Can we do better?
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Revenge of the Clones

While Mark is working through the pile of envelopes, some of the
clones realize that they could pair up and combine their results.

I This costs λ time, the clones have to follow the rules as well.
I The original Mark ends up with half as many envelopes to handle.

What is the total time? .

What is the speed-up? .
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Up a Tree with Poetry winner
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The optimization on the previous slide worked great.
I We’re computer scientists, let’s apply the optimization recursively.
I Viewed from another angle, this is an example of divide-and-conquer.

Combine the results in a tree.
I How many levels in the tree?
I How much time at each level?

What is the total time? .

What is the speed-up? .

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 9 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018


Is there more to life than poetry?

Find the largest element in a list.
Find the sum of the elements in a list.
Count the number of 3s in a list.
What to these all have in common?
We’ll look at more examples on Friday
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The Reduce Pattern

We have a problem that takes Tseq(N) sequential time, where N is
the “size” of the problem instance.
We can divide this into P tasks with “perfect” speed-up:

I Each task takes time Tseq(N)/P time.
I Combining the results takes dlog2(P)eλ time.

SpeedUp =
Tseq(N)

Tseq(N)/P+dlog2(P)eλ

What happens to SpeedUp as P goes large (for fixed N)?
What happens to SpeedUp as N goes large (for fixed P)?

I Assume T (N) grows faster than log N.
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When can we use reduce?
We have N values, V1, V2, V3, . . . VN .
We want to compute them with some operator, ◦. I.e. we want:

Totalseq = V1 ◦ V2 ◦ V3 ◦ · · · ◦ VN

I’ll assume the sequential computation is left-to-right, so
Totalseq = (· · · ((V1 ◦ V2) ◦ V3) ◦ · · · ) ◦ VN

Using reduce, we do these operations in clusters of N/P, and then
combine the results:

Totalreduce =
((· · · ((V1 ◦ V2) ◦ V3) ◦ · · · ) ◦ VN/P)
◦ ((· · · ((V(N/P)+1 ◦ V(N/P)+2) ◦ V(N/P)+3) ◦ · · · ) ◦ V2N/P)
◦ ((· · · ((V(2N/P)+1 ◦ V(2N/P)+2) ◦ V(2N/P)+3) ◦ · · · ) ◦ V3N/P)
· · ·
◦ ((· · · ((V((P−1)N/P)+1 ◦ V((P−1)N/P)+2) ◦ V((P−1)N/P)+3) ◦ · · · ) ◦ VN)

A sufficient condition is: (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z ).
What term describes an operator with this property?
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Reduce is a Higher Order Function

reduce(WorkerTree, Leaf, Combine) -> Result
I WorkerTree: a collection of worker processes, organized as a

tree.
F “Organized” means each process knows who its parent and children

processes are so it can send and receive the messages needed for
reduce.

I Leaf: a function – what to do at each leaf to produce a result to
combine using reduce.

F In our poetry example, Leaf finds the best poem in its subset of all
poems submitted to the contest.

I Combine(Left, Right): a function – the operation to be applied
at each node.

I Result: the value computed at the root of the tree.
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wtree:reduce

Reduce as implemented in the CpSc 418 Erlang library.
Example, count3s using wtree:reduce
count3s(WorkerTree, Key) ->

wtree:reduce(WorkerTree,
fun(ProcState) -> count3s leaf(ProcState, Key) end,
fun(Left, Right) -> count3s combine(Left, Right) end

).

count3s leaf(ProcState, Key) ->
MyList = workers:get(ProcState, Key),
length([E || E <- MyList, E =:= 3]).

count3s combine(Left, Right) -> Left+Right.

The code is available at reduce intro.erl.
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count3s notes (1/2)

WorkerTree: a tree of workers.
I To create a tree of Nworker workers, call
wtree:create(Nworkers).

I When your done, you can clean up by calling
wtree:reap(WorkerTree).

ProcState: Erlang is functional, how do workers remember
anything?

I Each worker executes a tail-recursive “get-a-task” function that is
called with ProcState as a parameter.

I This function does a receive to get a new Task (blocking if no
task is ready).

F NewProcState = Task(ProcState).
F Task is called with ProcState as a parameter.
F Task returns an updated process state, NewProcState.

I The worker recursively calls its get-a-task function, with
NewProcState as the process state parameter.

I ProcState is an Erlang key-list (i.e. a dictionary).
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count3s notes (2/2)
workers:get(ProcState, Key): fetch the value for Key from
ProcState. Called by a worker process.
NewProcState = workers:put(ProcState, Key,
Value): create a new process-state where Key maps to Value,
and all other mappings are the same as in ProcState. Called by
a worker process.
workers:update(Workers, Key, ValueList): Called by
the top-level process. ValueList should be a list with one
element per worker. The elements of ValueList are stored in
the ProcState of the corresponding workers with the key Key.
workers:retrieve(Workers, Key) -> ValueList: fetch
the value associate with Key for each worker in Workers.

I Frequently, we have a list distributed across the workers. In this
case, workers:retrieve(Workers, Key) returns a list of the
form [List1, List2, ...ListP] where P is the number of
workers, and ListI is the segement of the list held by worker I.

I To merge these segements into one list:
lists:append(workers:retrieve(Workers, Key))
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Testing count3s

count3s test(N workers, N values)
when is integer(N workers), N workers >= 0,

is integer(N values), N values >= 0 ->
WorkerTree = wtree:create(N workers),
% create a random list of N values integers chosen in [1, 10], distribute
% it across the workers of WorkerTree and associate it with the key ’data’.
workers:rlist(WorkerTree, N values, 10, data),
Par3s = count3s(WorkerTree, data),
Data = lists:append(workers:retrieve(WorkerTree, data)),
Seq3s = length([E || E <- Data, E == 3]),

case Par3s =:= Seq3s of
true ->
io:format("passed: N values = ~b, Par3s = ~b~n",

[N values, Par3s]),
ok;

false ->
io:format("failed: N values = ~b, Par3s = ~b, Seq3s = ~b~n",

[N values, Par3s, Seq3s]),
fail

end.
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Preview

September 14: Reduce – The Pattern
Reading: Lin & Snyder, chapter 5, pp. 112–125

September 17: Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out (due Oct. 1) – Reduce and Scan
September 19: Reduce & Scan Examples

Homework: Homework 1 due 11:59pm
September 21 – 26: Parallel Architecture
Sept. 28 – Oct. 5: Performance Analysis
October 8 – 15: Sorting
October 17: Intro. to CUDA
October 19: Midterm review
October 22: Midterm
Oct. 24 – Nov. 30: Data Parallel Computing, GPUs, and CUDA
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