
Reduce

Mark Greenstreet

CpSc 418 – September 12, 2018

Example Problem
The Reduce Pattern
Count3s

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 1 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Objectives

Understand how reduce combines values using a tree.
Describe the performance issues for reduce: trade-offs of time for
computation and time for communication
Describe 2 or 3 examples or reduce.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 2 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

CPSC 418 Poetry Competition

The competition:
I Everyone writes a poem.
I Everyone submits to poem to Mark (the contest judge).
I Mark reads all of the poems, compares them, selects the best

poem.
I The winner receives an original manuscript of the complete poems

of Li Bai, signed by the author.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 3 / 18

https://en.wikipedia.org/wiki/Li_Bai
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Sequential Time for the Poetry Competition

N students in the class.
trank to read and rank two poems.
Total time (N − 1)trank .
Works fine until N becomes so large that we can’t judge all the
poems in a reasonable amount of time.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 4 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Parallel poetry: the procedure

winner

rank

rank
clone_2

rank
clone_1

rank
clone_3

rank
clone_P

N/P
poems

N/P
poems

N/P
poems

N/P
poems

original

Mark

Clone P copies of Mark.
Each Mark-clone reads and ranks N/P poems and sends the best
poem to the original Mark.
The original Mark receives P candidates for the best poem, and
selects the best one.
The winner receives the prize.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 5 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Parallel poetry: time

The time for each of the P clones to select the best poem out of
N/P:

The time from when all P clones start until all P clones finish:

The time for the original Mark to rank the P finalists:

Simplify this to get .

SpeedUp =
Tseq
Tpar

= .

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 6 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Bureaucratic Overhead

To satisfy UBC privacy policies, the messages between the
Mark-clones and the original mark must be sent in special
envelopes.
There’s lots of special procedure for handling these envelopes,
takes time λ to send or receive a message.
The original Mark receives P messages from the P clones. This
takes time λP.

The total time is now: .

SpeedUp =
Tseq
Tpar

= .

Can we do better?

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 7 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Revenge of the Clones

While Mark is working through the pile of envelopes, some of the
clones realize that they could pair up and combine their results.

I This costs λ time, the clones have to follow the rules as well.
I The original Mark ends up with half as many envelopes to handle.

What is the total time? .

What is the speed-up? .

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 8 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Up a Tree with Poetry winner

rank

rankrank

rank rankrank rank

N/P
poems

rank

N/P
poems

rank

N/P
poems

rank

N/P
poems

rank

N/P
poems

rank

N/P
poems

rank

N/P
poems

rank

N/P
poems

rank

trank

trank

trank trank trank

trank

trank

λ

λ

λ

λ

N/P
poems

rank

N/P
poems

rank

λ

λ

λ

λ λ

λ

λ λλ

λλλλ

λ

λ λ λ λ

(N/P)trank

original

Mark

The optimization on the previous slide worked great.
I We’re computer scientists, let’s apply the optimization recursively.
I Viewed from another angle, this is an example of divide-and-conquer.

Combine the results in a tree.
I How many levels in the tree?
I How much time at each level?

What is the total time? .

What is the speed-up? .

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 9 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Is there more to life than poetry?

Find the largest element in a list.
Find the sum of the elements in a list.
Count the number of 3s in a list.
What to these all have in common?
We’ll look at more examples on Friday

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 10 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

The Reduce Pattern

We have a problem that takes Tseq(N) sequential time, where N is
the “size” of the problem instance.
We can divide this into P tasks with “perfect” speed-up:

I Each task takes time Tseq(N)/P time.
I Combining the results takes dlog2(P)eλ time.

SpeedUp =
Tseq(N)

Tseq(N)/P+dlog2(P)eλ

What happens to SpeedUp as P goes large (for fixed N)?
What happens to SpeedUp as N goes large (for fixed P)?

I Assume T (N) grows faster than log N.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 11 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

When can we use reduce?
We have N values, V1, V2, V3, . . . VN .
We want to compute them with some operator, ◦. I.e. we want:

Totalseq = V1 ◦ V2 ◦ V3 ◦ · · · ◦ VN

I’ll assume the sequential computation is left-to-right, so
Totalseq = (· · · ((V1 ◦ V2) ◦ V3) ◦ · · ·) ◦ VN

Using reduce, we do these operations in clusters of N/P, and then
combine the results:

Totalreduce =
((· · · ((V1 ◦ V2) ◦ V3) ◦ · · ·) ◦ VN/P)
◦ ((· · · ((V(N/P)+1 ◦ V(N/P)+2) ◦ V(N/P)+3) ◦ · · ·) ◦ V2N/P)
◦ ((· · · ((V(2N/P)+1 ◦ V(2N/P)+2) ◦ V(2N/P)+3) ◦ · · ·) ◦ V3N/P)
· · ·
◦ ((· · · ((V((P−1)N/P)+1 ◦ V((P−1)N/P)+2) ◦ V((P−1)N/P)+3) ◦ · · ·) ◦ VN)

A sufficient condition is: (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z).
What term describes an operator with this property?

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 12 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Reduce is a Higher Order Function

reduce(WorkerTree, Leaf, Combine) -> Result
I WorkerTree: a collection of worker processes, organized as a

tree.
F “Organized” means each process knows who its parent and children

processes are so it can send and receive the messages needed for
reduce.

I Leaf: a function – what to do at each leaf to produce a result to
combine using reduce.

F In our poetry example, Leaf finds the best poem in its subset of all
poems submitted to the contest.

I Combine(Left, Right): a function – the operation to be applied
at each node.

I Result: the value computed at the root of the tree.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 13 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

wtree:reduce

Reduce as implemented in the CpSc 418 Erlang library.
Example, count3s using wtree:reduce
count3s(WorkerTree, Key) ->

wtree:reduce(WorkerTree,
fun(ProcState) -> count3s leaf(ProcState, Key) end,
fun(Left, Right) -> count3s combine(Left, Right) end

).

count3s leaf(ProcState, Key) ->
MyList = workers:get(ProcState, Key),
length([E || E <- MyList, E =:= 3]).

count3s combine(Left, Right) -> Left+Right.

The code is available at reduce intro.erl.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 14 / 18

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/reduce_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

count3s notes (1/2)

WorkerTree: a tree of workers.
I To create a tree of Nworker workers, call
wtree:create(Nworkers).

I When your done, you can clean up by calling
wtree:reap(WorkerTree).

ProcState: Erlang is functional, how do workers remember
anything?

I Each worker executes a tail-recursive “get-a-task” function that is
called with ProcState as a parameter.

I This function does a receive to get a new Task (blocking if no
task is ready).

F NewProcState = Task(ProcState).
F Task is called with ProcState as a parameter.
F Task returns an updated process state, NewProcState.

I The worker recursively calls its get-a-task function, with
NewProcState as the process state parameter.

I ProcState is an Erlang key-list (i.e. a dictionary).

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 15 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

count3s notes (2/2)
workers:get(ProcState, Key): fetch the value for Key from
ProcState. Called by a worker process.
NewProcState = workers:put(ProcState, Key,
Value): create a new process-state where Key maps to Value,
and all other mappings are the same as in ProcState. Called by
a worker process.
workers:update(Workers, Key, ValueList): Called by
the top-level process. ValueList should be a list with one
element per worker. The elements of ValueList are stored in
the ProcState of the corresponding workers with the key Key.
workers:retrieve(Workers, Key) -> ValueList: fetch
the value associate with Key for each worker in Workers.

I Frequently, we have a list distributed across the workers. In this
case, workers:retrieve(Workers, Key) returns a list of the
form [List1, List2, ...ListP] where P is the number of
workers, and ListI is the segement of the list held by worker I.

I To merge these segements into one list:
lists:append(workers:retrieve(Workers, Key))

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 16 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Testing count3s

count3s test(N workers, N values)
when is integer(N workers), N workers >= 0,

is integer(N values), N values >= 0 ->
WorkerTree = wtree:create(N workers),
% create a random list of N values integers chosen in [1, 10], distribute
% it across the workers of WorkerTree and associate it with the key ’data’.
workers:rlist(WorkerTree, N values, 10, data),
Par3s = count3s(WorkerTree, data),
Data = lists:append(workers:retrieve(WorkerTree, data)),
Seq3s = length([E || E <- Data, E == 3]),

case Par3s =:= Seq3s of
true ->
io:format("passed: N values = ~b, Par3s = ~b~n",

[N values, Par3s]),
ok;

false ->
io:format("failed: N values = ~b, Par3s = ~b, Seq3s = ~b~n",

[N values, Par3s, Seq3s]),
fail

end.

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 17 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Preview

September 14: Reduce – The Pattern
Reading: Lin & Snyder, chapter 5, pp. 112–125

September 17: Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out (due Oct. 1) – Reduce and Scan
September 19: Reduce & Scan Examples

Homework: Homework 1 due 11:59pm
September 21 – 26: Parallel Architecture
Sept. 28 – Oct. 5: Performance Analysis
October 8 – 15: Sorting
October 17: Intro. to CUDA
October 19: Midterm review
October 22: Midterm
Oct. 24 – Nov. 30: Data Parallel Computing, GPUs, and CUDA

Greenstreet Reduce CpSc 418 – Sept. 12, 2018 18 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

