Reduce

Mark Greenstreet

CpSc 418 — September 12, 2018

@ Example Problem
@ The Reduce Pattern
@ Count3s

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Objectives

@ Understand how reduce combines values using a tree.

@ Describe the performance issues for reduce: trade-offs of time for
computation and time for communication

@ Describe 2 or 3 examples or reduce.

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

CPSC 418 Poetry Competition

@ The competition:
» Everyone writes a poem.
» Everyone submits to poem to Mark (the contest judge).
» Mark reads all of the poems, compares them, selects the best

poem.
The winner receives an original manuscript of the complete poems

of Li Bai, signed by the author.

v

https://en.wikipedia.org/wiki/Li_Bai
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Sequential Time for the Poetry Competition

@ N students in the class.
@ lank to read and rank two poems.
@ Total time (N — 1) tank-

@ Works fine until N becomes so large that we can’t judge all the
poems in a reasonable amount of time.

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Parallel poetry: the procedure

winner

original

@ Clone P copies of Mark.

@ Each Mark-clone reads and ranks N/P poems and sends the best
poem to the original Mark.

@ The original Mark receives P candidates for the best poem, and
selects the best one.

@ The winner receives the prize.

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Parallel poetry: time

@ The time for each of the P clones to select the best poem out of
N/P:

@ The time from when all P clones start until all P clones finish:

@ The time for the original Mark to rank the P finalists:

@ Simplify this to get

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Bureaucratic Overhead

@ To satisfy UBC privacy policies, the messages between the
Mark-clones and the original mark must be sent in special
envelopes.

@ There’s lots of special procedure for handling these envelopes,
takes time A to send or receive a message.

@ The original Mark receives P messages from the P clones. This
takes time AP.

@ The total time is now:

@ SpeedUp = % =

Can we do better?

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Revenge of the Clones

@ While Mark is working through the pile of envelopes, some of the
clones realize that they could pair up and combine their results.

» This costs) time, the clones have to follow the rules as well.
» The original Mark ends up with half as many envelopes to handle.

@ What is the total time?

@ What is the speed-up?

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

A A A A A I3 A, A
N/P N/P N/P N/P N/P N/P N/P N/P
poems | | poems | |poems | |poems | |poems | | poems poems | | poems

@ The optimization on the previous slide worked great.

» We’re computer scientists, let’s apply the optimization recursively.
» Viewed from another angle, this is an example of divide-and-conquer.

@ Combine the results in a tree.

» How many levels in the tree?
» How much time at each level?

@ What is the total time?

@ What is the speed-up?

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Is there more to life than poetry?

@ Find the largest element in a list.

@ Find the sum of the elements in a list.
@ Count the number of 3s in a list.

@ What to these all have in common?

@ We’'ll look at more examples on Friday

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

The Reduce Pattern

@ We have a problem that takes Tq(N) sequential time, where N is
the “size” of the problem instance.
@ We can divide this into P tasks with “perfect” speed-up:
» Each task takes time Tq(N)/P time.
» Combining the results takes [log,(P)]A time.
Tseq(N)
Teea(N)/P+Tlog,(P)TA

@ What happens to SpeedUp as P goes large (for fixed N)?
@ What happens to SpeedUp as N goes large (for fixed P)?
» Assume T(N) grows faster than log N.

@ SpeedUp =

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

When can we use reduce?

@ We have N values, Vi, Vo, V3, ... Wy.

@ We want to compute them with some operator, o. l.e. we want:
Totalseq = VioVooVzo---0Vy

@ I'll assume the sequential computation is left-to-right, so
TOta/Seq = (((V1 e} V2)O V3)O)O VN

@ Using reduce, we do these operations in clusters of N/P, and then
combine the results:

Totalreqyce -
(- ((VioVo)o Vg)o--)o Vip)
o ((.. ((V(N/P)+1 o V(N/P)+2) o V(N/P)+3) O) o V2N/P)
o ((+- ((Van/py+1© Vienypy12) © Vienypy3) ©) © Van,p)
o((--- ((V((P_1)N/P)+1 o V((P—1)N/P)+2) o V((P—1)N/P)+3) o--)oVn)

@ A sufficient conditionis: (Xo Y)oZ =Xo (Y oZ).
@ What term describes an operator with this property?

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Reduce is a Higher Order Function

@ reduce (WorkerTree, Leaf, Combine) -> Result
» WorkerTree: a collection of worker processes, organized as a
tree.

* “Organized” means each process knows who its parent and children
processes are so it can send and receive the messages needed for
reduce.

» Leaf: afunction — what to do at each leaf to produce a result to
combine using reduce.

* In our poetry example, Leaf finds the best poem in its subset of all
poems submitted to the contest.

» Combine (Left, Right): a function —the operation to be applied
at each node.
» Result: the value computed at the root of the tree.

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

wtree:reduce

@ Reduce as implemented in the CpSc 418 Erlang library.
@ Example, count3s using wtree: reduce

count3s (WorkerTree, Key) ->
wtree:reduce (WorkerTree,
fun (ProcState) -> count3s_leaf (ProcState, Key) end,
fun (Left, Right) -> count3s_combine (Left, Right) end
) .

count3s_leaf (ProcState, Key) ->
MyList = workers:get (ProcState, Key),
length([E || E <- MyList, E =:= 3]).
count3s_combine (Left, Right) -> Left+Right.

@ The code is available at reduce_intro.erl.

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/reduce_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

count3s notes (1/2)

@ WorkerTree: a tree of workers.
» To create a tree of Nworker workers, call
wtree:create (Nworkers).
» When your done, you can clean up by calling
wtree:reap (WorkerTree).

@ ProcState: Erlang is functional, how do workers remember
anything?
» Each worker executes a tail-recursive “get-a-task” function that is
called with ProcState as a parameter.
» This function does a receive to get a new Task (blocking if no
task is ready).
* NewProcState = Task(ProcState).
* Task is called with ProcState as a parameter.
* Task returns an updated process state, NewProcState.
» The worker recursively calls its get-a-task function, with
NewProcState as the process state parameter.
» ProcState is an Erlang key-list (i.e. a dictionary).

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

count3s notes (2/2)

@ workers:get (ProcState, Key): fetch the value for Key from
ProcState. Called by a worker process.

@ NewProcState = workers:put (ProcState, Key,
Value): create a new process-state where Key maps to value,
and all other mappings are the same as in Procstate. Called by
a worker process.

@ workers:update (Workers, Key, ValueList): Called by
the top-level process. valuelist should be a list with one
element per worker. The elements of valuelList are stored in

the Procstate of the corresponding workers with the key Key.
@ workers:retrieve (Workers, Key) —> ValuelList: fetch
the value associate with Key for each worker in Workers.

» Frequently, we have a list distributed across the workers. In this
case, workers:retrieve (Workers, Key) returns a list of the
form [Listl, List2, ...ListP] where P isthe number of
workers, and ListI is the segement of the list held by worker I.

» To merge these segements into one list:

lists:append(workers:retrieve (Workers, Key))

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Testing count3s

count3s_test (N.workers, N_values)

when is_integer (N.workers), N.workers >= 0,

is_integer (N_values), N_.values >= 0 ->

WorkerTree = wtree:create (N_.workers),
create a random list of N_values integers chosen in [1, 10], distribute
it across the workers of WorkerTree and associate it with the key ’data’.
workers:rlist (WorkerTree, N_values, 10, data),
Par3s = count3s (WorkerTree, data),
Data = lists:append(workers:retrieve (WorkerTree, data)),
Seg3s = length([E || E <- Data, E == 3]),

3
S
o
g

case Par3s =:= Seqg3s of
true —->
io:format ("passed: N.values = ~b, Par3s = ~b~n",
[N_.values, Par3s]),
ok;
false ->
io:format ("failed: N.values = ~b, Par3s = ~b, Seg3s = ~b~n",
[N.values, Par3s, Seg3sl]),
fail
end.

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

Preview

September 14: Reduce — The Pattern
Reading: Lin & Snyder, chapter 5, pp. 112-125
September 17: Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)
Homework 2 goes out (due Oct. 1) — Reduce and Scan
September 19: Reduce & Scan Examples
Homework: Homework 1 due 11:59pm
September 21 — 26: Parallel Architecture
Sept. 28 — Oct. 5: Performance Analysis
October 8 — 15: Sorting
October 17: Intro. to CUDA
October 19: Midterm review
October 22: Midterm
Oct. 24 — Nov. 30: Data Parallel Computing, GPUs, and CUDA

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_12
https://en.wikipedia.org/wiki/2018

