Processes and Messages

Mark Greenstreet

CpSc 418 — September 10, 2018

@ Erlang Processes

@ Sending and Receiving Messages

@ Best Practices with Messages
@ Table of Contents

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 1/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Objectives

@ Introduce Erlang’s features for concurrency and parallelism

» Spawning processes.
» Sending and receiving messages.

@ Describe timing measurements for these operations and the
implications for writing efficient parallel programs.
» Communication often dominates the runtime of parallel
programs.
@ The source code for the examples in this lecture is available here:
procs.erl.

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 2/24

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Processes — Overview

@ The built-in function spawn creates a new process.

@ Each process has a process-id, pid.

» The built-in function self() returns the pid of the calling process.
» spawn returns the pid of the process that it creates.
» The simplest form is spawn (Fun) .
* A new process is created — “the child”.
* The pid of the new process is returned to the caller of spawn.
* The function Funis invoked with no arguments in that process.
* The parent process and the child process are both running.
* When Fun returns, the child process terminates. The return value is
discarded.

@ Operations on pids
» send messages: Pid ! Message

> debug, SE€€e: nttp://erlang.org/doc/apps/debugger/debugger_chapter.html

and http://erlang-tutorial.blogspot.ca/2010/03/erlang-debugging.html,
but I'll admit that | haven’t used the debugger myself.
» get all kinds of information about the process:
process_info (Pid, What).

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 3/24

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang-tutorial.blogspot.ca/2010/03/erlang-debugging.html
http://erlang.org/doc/man/erlang.html#process_info-2
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Processes — a friendly example
@ Writing the code:

hello(N) when is_integer(N), N >= 0 ->
[spawn (fun () —-> io:format (
"hello world from process ~b~n", [I]
end)
|| T <= lists:seq(l,N)
1.
@ Running the code:

1> c(procs) .

{ok,procs}

2> procs:hello(3).

hello world from process
hello world from process
hello world from process
[<0.40.0>,<0.41.0>,<0.42.

o W N

>]
@ when is_integer(N), N >= 0 isaguard.
See slide 27 or Guards, Guards! in Learn You Some Erlang.

@ [Expr || var <- List] is alist comprehension.
See slide 28 or List Comprehensions in Learn You Some Erlang.

@ [<0.40.0>,<0.41.0>,<0.42.0>] is the list of pids returned by
procs:hello(3).

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 4/24

http://learnyousomeerlang.com/syntax-in-functions#guards-guards
http://learnyousomeerlang.com
http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Messages

@ To solve tasks in parallel, the processes need to communicate.

@ Message passing is fully-integrated into Erlang — it makes Erlang
a simple language for getting started.
@ Outline of the rest of the lecture:
» Sending and Receiving Messages
» Messages are asynchronous
» Message ordering
» Best Practices for messages

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 5/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Sending and Receiving Messages

@ Sending a message: Pid ! Expr.

» Expr is evaluated, and the result is sent to process pid.

» We can send any Erlang term: integers, atoms, lists, tuples, ...
@ Receiving a message:

receive

Pattern1 -> Expri1;
Pattern2 -> Expr2;

PatternN —> ExprN
end
If there is a pending message for this process that matches one of
the patterns,
» The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.
» Otherwise, the process blocks until such a message is received.

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 6/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Message passing in Erlang is asynchronous

pidl | busy |Pid2 ! Msg | busy |

Pid2 | busy ‘ | receive ... | busy |
Both Pid1 and Pid2 are busy. The message sent
by Pid1 has not yet been received by Pid2.

@ Asynchronous communication lets us overlap communication with
computation.
» This can be very important for lowering the impact of high
communication costs.

@ But you need to be careful about synchronization.
» If you need to guarantee that process pid1 does not proceed until
Pid2 receives the message.
» Have pid2 send an acknowledgment back to pid1, and have
pPid1l wait for the acknowledgement.
» Conclusion: we can implement synchronous communication using
asynchronous messages.

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 7124

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Message Ordering

pidl =(busy) -(PLd2iMiz)-Pia3tMiz) < busy D-eee
pid2 ~(receive)~(" locked

pids - busy)~(zeceive)~(blocked

@ Given two processes, Proc1 and Proc2, messages sent from Proc1 to
Proc2 are received at Proc2 in the order in which they were sent.

@ Message delivery is reliable: if a process doesn’t terminate, any message
sent to it will eventually be delivered.
@ Other than that, Erlang makes no ordering guarantees.
» In particular, the triangle inequality is not guaranteed.
» For example, process Proc1 can send message M12 to process Proc2 and
after that send message M13to Proc3.
» Process Proc3 can receive the message M13, and then send message M32
to process Proc2.
» Process Proc2 can receive messages M12 and M32 in either order. In
particular, message M32 can arrive before message M12.

Greenstreet Processes and Messages CpSc 418 — Sept. 10, 2018 8/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Adding two numbers using processes and messages

@ The plan:

» We'll spawn a process in the shell for adding two numbers.
» This child process receives two numbers, computes the sum, and
sends the result back to the parent.

add_-proc (PPid)
when is_pid(PPid) ->
receive
A —>
receive
B —>
PPid !
end
end.

A+B

adder () —>
MyPid = self(),
spawn (fun () ->
add_proc (MyPid)
end) .

Greenstreet Processes and Messages

3>

<0.

4>
2

Apid = procs:adder() .
44.0>

Apid ! 2.

Apid ! 3.

receive Sum -> Sum end.

CpSc 418 — Sept. 10, 2018

9/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Best Practices for Message

@ Erlang has a very simple set of primitive operations for processes
and communication: spawn, ! (send), and receive. That’s itl.

@ Using these operations well requires discipline and experience.
The rest of this lecture gives an overview.

» Reactive processes and recursion: what about the call stack?

» Tail-call elimination: an important optimization performed by the
Erlang compiler. Erlang processes depend on it to avoid stack
overflows.

» Tagging messages: making sure that you receive the message you
intended.

» Time-outs: avoid hanging forever when something goes wrong.

» Communication patterns: as Learn You Some Erlang said “We love
messages, but we keep them secret”.

@ This is just an overview — you’ll see more as the term goes on.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 10/24

http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Reactive Processes and Recursion

@ Often, we want processes that do more than add two numbers together.
We’'ll use an accumulator as an example.

acc-_proc (Tally)
when is_integer (Tally)
receive

N when is_integer (N) ->
[acc_proc(Tally+N)];

{Pid, total} —>
pid ! Tally,
{accproc(Tally) };

exit -> Tally

end.
accumulator () —->
spawn (fun() —>
acc_proc (0)
end) .

->

7> BPid =
<0.53.0>
8> BrPid ! 1.

1

9> BPid ! 2.

2

10> Bpid ! 3.

3

11> BPid ! {self(), total}.
{<0.33.0>, total}

12> receive Tl -> T1 end.

6

% continued on next slide

@ Nice, but what’s up with the [add_proc (Tally+N)] and
{add-proc (Tally) }? Why the list and tuple stuff.

» It's there to illustrate a point about recursive functions.

» See the next slide.

Greenstreet Processes and Messages

CpSc 418 — Sept. 10,2018

procs:accumulator () .

11/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Reactive Processes and Recursion

@ Often, we want processes that do more than add two numbers together.
We’'ll use an accumulator as an example.

acc-_proc (Tally)
when is_integer (Tally)
receive

N when is_integer (N) ->
[acc_proc(Tally+N)];

{Pid, total} —>
pid ! Tally,
{accproc(Tally) };

exit -> Tally

end.
accumulator () —->
spawn (fun() —>
acc_proc (0)
end) .

—>

% continued from previous slide
13> Bpid ! 4.

4

14> Bpid ! {self(), total}.
{<0.33.0>, total}

15> BPid ! 5.

5

16> BPid ! 6.

6

17> BPid ! {self(), total}.

{<0.33.0>, total}

18> receive T2 -> T2 end.
10
19> receive T3 -> T3 end.
21

@ Nice, but what’s up with the [add_proc (Tally+N)] and
{add-proc (Tally) }? Why the list and tuple stuff.

» It's there to illustrate a point about recursive functions.

» See the next slide.

Greenstreet Processes and Messages

CpSc 418 — Sept. 10,2018

11/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

The many stack frames of acc proc

acc_stack (N) ->
AccPid = accumulator (),
[AccPid ! T || I <- lists:seq(l, N)],
AccPid ! {self(), total},
receive Tally -> Tally end,
{stack.size, Size} =
process_info (AccPid, stack_size),
AccPid ! exit,
io:format (
"N=~b, stack size = ~b, Tally=~b~n",
[N, Size, Tally]) .

@ Stack size grows linearly with N.

N Size

0 3

1 4

2 5

3 6

10 13
100 103
1000 1003
10000 10003
100000 | 100003
N N+3

@ Erlang is very efficient with its stack — just one Erlang “word” per

call of the acc_proc function.

@ However, if we have some kind of reactive process, we’ll

eventually run out of memory for the stack.

Greenstreet Processes and Messages

CpSc 418 — Sept. 10,2018

12/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Cleaning up acc_proc

@ From slide 11: “what’s up with the [acc_proc (Tally+N)] and

{accproc(N)}?”
Let’s delete that useless code.

acc_proc?2 (Tally)
when is_integer (Tally) ->
receive
N when is_integer (N) ->
acc_proc?2 (Tally+N) ;
{pid, total} ->
pid ! Tally,
acc_proc2 (Tally);
exit -> ok
end.
accumulator2 () ->

o

% spawns acc_proc2 (0) .

acc_stack2 () —->

o

% uses accumulate?2 () .

@ Holy stack frames, Batman!!! What happened?

Greenstreet Processes and Messages

0
-
N
(0]

10000
100000

—_
o
ACII\CTN \C RN \C I \O B \C T \O RN \C I \O I)

N

CpSc 418 — Sept. 10,2018

13/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

The Truth about Stack Frames

:
return value

return address

actuals

top of locals

stack

@ The figure at the left shows how stack
frames are often presented in first or second
year CS courses.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018

14 /24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

The Truth about Stack Frames

: @ The figure at the left shows how stack
return value frames are often presented in first or second
return address year CS courses.

actuals . .
Tocals @ When a function is called, we expect a new
tum valie frame to be allocated.
return address » But what happens if the caller just returns
actuals the value of the callee?
top of locals » When the callee returns, the return value is
stack copied, and the callee returns.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 14/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

The Truth about Stack Frames

@ When a function is called, we expect a new

return value frame to be allocated.
return address » But what happens if the caller just returns
actuals the value of the callee?
topof __ locals » When the callee returns, the return value is
stack copied, and the callee returns (according to
introductory CS).

» A more efficient approach is to overwrite the
caller’s stack frame with a new frame for the
caller.

» This is called tail-call elimination.

@ Tail call elimination turns tail-recursive
functions into while-loops.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 14/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Remarks about Tail call elimination

@ Many introductory CS courses teach a big lie about recursion:
» The claim is that iteration is faster than recursion.
» With a good compiler, they can be the same.
» You should write whichever version is clearer.

@ Tail call elimination in various languages:

» Erlang: mandatory — otherwise, reactive processes won’t work.

» Compilers for most functional languages (e.g. Haskell, Lisp, ML,
Racket, ...) perform tail-call elimination.

» Java does not perform tail-call elimination — it messes with the
stack based privilege management — “it seemed like a good idea at
the time”.

» gcc and g++ perform tail call elimination when -0 is given.

» Python forbids tail-call elimination — Guido doesn't like it.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 15/24

http://neopythonic.blogspot.ca/2009/04/tail-recursion-elimination.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Tagging messages

@ It’'s a very good idea to include “tags” with messages.
@ This prevents your process from receiving an unintended message:
» “Oh, | forgot that another process was going to send me that. | thought
it would happen later.”
» Or, Pid1 sends three messages to Pid2 and you think you knew the
order, but a change in the code for one process breaks the code.
@ Here’s an example of a “typical” tagged message:
ToPid ! {FromPid, Tag, Data}
Where:
» ToPid —the process that will receive the message.
» FromPid —the process sending the message, i.e. self ().
» Tag — something to indicate the intended purpose of the message,
often an atom.
» Data — the actual content of the message.
@ For example, my accumulator might be better if instead of just
receiving an integer, it received
{FromPid, add, 2}

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 16/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Time Outs — Why we need them

@ Sometimes bad things happen

» A process dies and never sends a message we expected.

» We made a typo when tagging a message, and it doesn’t match the
pattern in the receive expression.
> ..

@ A receive can block forever if it doesn’t match a message in the
in-box.
@ Or, we can use time-outs
receive

Patternl -> Exprl;
Pattern2 -> Expr2;

PatternN -> ExprN
after TimeOut -> % TimeOut is in milliseconds
OopsLetsTryToRecover
end

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 17 /24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Time Outs are Good

@ Hanging the Erlang shell while waiting for a blocked receive can
be painful.

» We can "¢ out of the Erlang shell.
» But | haven’t found a consistent way to recover.

@ We can add a time-out to the receive operation.

» What should we do in the after clause?

» Often, we should just print some error message and give up.

» misc:msg_dump (Wwho, PatternList) fromthe CS418 Erlang
library can be helpful.

* Who is a string to describe what function/module/etc was attempting
the receive that had the time-out.

* PatternList is a list of strings — these can be cut-and-pasted from
the receive expression. They report what patterns who was looking
for.

* msg_dump prints the patterns and then reports all pending messages
in the processes in-box.

* This can make it easy to spot typos and other errors that led to the
time-out.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 18/24

https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#msg_dump-2
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Time Outs are Bad

@ The value for TimeOut is wrong (no matter what you choose):

» If the value is too small, then code will fail when you try to scale
your application to larger problems or larger networks of machines.
» If the value is too large, then you will spend too long waiting for
time-outs.
@ Conclusion:

» Time-outs are great for debugging.

» Time-outs can be important in production code, especially in
networked applications where we are concerned about machines
going down, network connectivity failing, etc.

» |f this were a course on high-reliability networked applications, we’d
discuss time-outs in more detail.

» For this course, time-outs are great for debugging, but you should
be aware of their limitations.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 19/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Timing Measurements

@ | ran some experiments from procs on
thetis.ugrad.cs.ubc.ca.

» Time for a tail-recursive call: 6.56ns — median of five trials,
1,000,000 tail-recursive calls per trial. See procs:time_xor.

» Time for an integer add: Ons. | added an addition operation to the
previous function. Median time per call is 6.65ns, which suggests
0.09ns for the add, but the variation for the measurement of
procs:time_xor were much larger.

» Time to spawn a process: 1.31us — median of five trials, spawn
1,000 trivial processes per trial. Spawning a process appears to be
about 200x the time for calling a function.

» Time to send and receive a message: work in progress.

* Challenge: Erlang allows thousands of processes but runs a smaller
number of schedulers.

* |f process Pid1 sends a message to Pid2 and both are assigned to
the same scheduler, the switch from executing Pid1 to Pid2 is
basically a co-routine call — roughly as fast as a simple function call.

* If the processes are on different schedulers, then | believe the time is
similar to that of spawning a process.

* I'm working on getting good, clear, measurements.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 20/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Communications Patterns

@ Communication is often the critical design consideration for
parallel software.
» We will characterize parallel algorithms by their communication
patterns: trees, rings, meshes, butterflies, random, etc.
» We will also see that the implementation of physical communication
links is a key distinguishing feature of parallel architectures.
» We will write functions that abstract communication patterns to
provide a bridge between the software and implementation.
@ This means you won’t be writing ! (send) or receive very often.
» Unless we specifically ask you to. ©.
» But you'll see that this stuff is happening “under the hood” — e.g.
when your code crashes and we print a backtrace.
» You also need to make reasonable assumptions about the
communication actions of our API code to get good performance.
@ For more,
» We'll be looking at trees of processes in the coming week.
» See also LYSE, We love messages, but we keep them secret.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 21/24

http://learnyousomeerlang.com
http://learnyousomeerlang.com/more-on-multiprocessing#secret-messages
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Summary

@ Processes are easy to create in Erlang.
» The spawn mechanism can be used to start other processors on
the same CPU or on machines spread around the internet.

@ Processes communicate through messages

» Message passing is asynchronous.
» The receiver can use patterns to select a desired message.
Tail-recursion is essential for implementing processes that can
handle an arbitrary number of messages.

* Your instructors lied to you if they told you that iteration is intrinsically

faster than recursion.

Tagging and time-outs are important for writing robust code.
We usually abstract process creation and communication by writing
APls that support common communication patterns.

@ Now, we're ready to plunge into real, parallel algorithms and
software!

v

v

v

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 22/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Preview

September 12: Reduce — The Algorithm
Reading: Learn You Some Erlang, Errors and Exceptions through
A Short Visit to Common Data Structures
September 14: Reduce — The Pattern
Reading: Lin & Snyder, chapter 5, pp. 112-125
September 17: Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)
Homework 2 goes out (due Oct. 1) — Reduce and Scan
September 19: Reduce & Scan Examples
Homework: Homework 1 due 11:59pm
September 21 — 26: Parallel Architecture
Sept. 28 — Oct. 5: Performance Analysis
October 8 — 15: Sorting
October 17: Intro. to CUDA
October 19: Midterm review
October 22: Midterm
Oct. 24 — Nov. 30: Data Parallel Computing, GPUs, and CUDA

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 23/24

http://learnyousomeerlang.com
http://learnyousomeerlang.com/errors-and-exceptions
http://learnyousomeerlang.com/a-short-visit-to-common-data-structures
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Review Questions (1 of 2)

@ How do you spawn a new process in Erlang?

@ What guarantees does Erlang provide (or not) for message
ordering?

@ Give an example of using patterns to select messages.

@ Why is it important to use a tail-recursive function for a reactive
process?

» In other words, why is it a bad idea to use a head-recursive function
for a reactive process.

» The answer isn’t explicitly on the slides, but you should be able to
figure it out from what we’ve covered.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 24 /24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Review Questions (2 of 2)

The c3s_v1 and/or c3s_v2 functions in procs.erl implement a (very
inefficient) way to count the 3s in a list.

One of c3s_v1 or c3s_v2 works correctly, the other does not.
Compile the code and try them to determine which is which.

Explain the differences between the two functions and how that
leads to one working and the other failing.

Implement the message flushing described in LYSE to show
pending messages on a time-out. Use it with the receive
operations for these count-3s functions (the receive operations are
in related functions).

How does the message-flush make the error obvious?

Identify the recursive functions in this example.

One of these recursive functions is not tail recursive. Which one?
Rewrite the non tail-recursive function to be tail-recursive.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 25/24

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/src/procs.erl
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Supplementary material

@ List Comprehensions
@ Guards
@ Tracing execution of Erlang processes

Greenstreet Processes and Messages

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Guards

@ Patterns can include guards:
Pattern when BoolExpr
@ This pattern matches a Term iff:
» The structure of Term matches Pattern, and
» BoolExpris satisfied.
» BoolExpr can consist of constants, variables, arithmetic and boolean
operations, and comparisons.
» Erlang is very restrictive about what functions you can use.
*built-in functions that have no side-effects.
* some handy ones: element (N, Tuple), is_integer (X), is_list (X),
is_tuple (X),...
@ More elaborate guards can be written.
» BoolExpr1, BoolExpr2 is roughly andalso.
» BoolExpr1; BoolExpr2 is roughly orelse.
» The “roughly” bit is because they handle exceptions and nesting differently.
See Guards, Guards! in LYSE and/or Erlang Language Reference —
Expressions — Guard Sequences in the Erlang documentation.

@ Using guards sensibly can help catch errors early and make your code
easier to read my making your assumptions explicit.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 27 /24

http://learnyousomeerlang.com/syntax-in-functions#guards-guards
http://learnyousomeerlang.com
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/reference_manual/expressions.html
http://www.erlang.org/doc/reference_manual/expressions.html#id78951
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

List Comprehensions

@ The higher-order functions map and filter are used frequently
in functional programs.

Erlang has a simple syntax for such operations.

v

» It's called a List Comprehension.
» [Expr || Var <- List, Cond, ...1.
» Expris evaluated with Var set to each element of List that satisfies
Cond.
@ Example:

20>R = misc:rlist (5, 1000).
[444,724,946,502,312].

21>[X*X || X <= R, X rem 3 == 0].
[197136,97344].

@ See also List Comprehensions in LYSE.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 28/24

http://erlang.org/doc/man/lists.html#map-2
http://erlang.org/doc/man/lists.html#filter-2
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#rlist-2
http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Tracing Processes
When you implement a reactive process, it can be handy to trace the
execution. Here’s a simple approach:
@ Add an io: format call when entering the function and after
matching each receive pattern.

@ Example:
acc_proc (Tally) —>
io:format ("~p: acc_proc (~b)~n", [self (), Tallyl),
receive
N when is_integer (N) ->
io:format ("~p: received ~b~n", [self(), NJ]),

acc_proc (Tally+N);
Msg = {Pid, total}
io:format ("~p: received ~p~n", [self(), Msqgl),
pid ! Tally,
acc_proc(Tally)
end.

@ Try it (e.g. with the example from slide 11).
@ Don't forget to delete (or comment out) such debugging output
before releasing your code.

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018 29/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

Table of Contents

@ Objectives
@ Processes
» “hello world” example
@ Messages
» Sending and Receiving
Messages
» Messages are asynchronous
» Message ordering
@ Best Practices
» Processes and Recursion
* Ex.: addding two numbers

* Tail call elimination
» Tagging Messages
» Time-Outs
» Communication Patterns

@ Summary

@ Preview of upcoming lectures
@ Review of this lecture

@ Supplementary material

» Guards
» List Comprehensions
» Tracing Processes

@ Table of Contents

Greenstreet Processes and Messages CpSc 418 — Sept. 10,2018

30/24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_10
https://en.wikipedia.org/wiki/2018

