
Introduction to Erlang

Mark Greenstreet

CpSc 418 – September 7, 2018

Functional Programming
Sequential Erlang
Supplementary Material

I Table of Contents

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Objectives

At the end of this lecture, you should be able to:
Explain key concepts of functional
programming:

I What is referential transparency?
I Why do functional languages use recursion

instead of loops?
Read and write simple Erlang functions

I Write functions using explicit recursion and
using fold for the sum, product, maximum,
or the longest run of ones in a list

I How does the fold operator encapsulate a
common programming pattern?

A.K. Erlang
1878 – 1929

Danish mathematician,
engineer, and statistician

picture from https://upload.wikimedia.org/wikipedia/commons/f/fd/Erlang.jpg

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 2 / 20

https://upload.wikimedia.org/wikipedia/commons/f/fd/Erlang.jpg
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Erlang

Message passing is our first parallel programming paradigm:
I We’ll use Erlang as a message-passing language.
I Many concepts, algorithms, and performance trade-offs

for parallel programming are easy to illustrate using Erlang.
I Erlang has features that make common parallel programming

pitfalls easier to avoid.
Erlang is functional:

I Values are bound to variables when the variable is declared.
I The value of a variable never changes.
I For parallel programming, this means you don’t have one process

corrupting the state of another process.
Erlang uses message passing for inter-process communication:

I Communication between processes is with send and receive
expressions.

I Communication costs are the dominant design issue for most
parallel software

F Erlang makes these issues explicit.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 3 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Functional Programming
Imperative programming (C, Java, Python, . . .) is a programming
model that corresponds to the von Neumann computer:

I A program is a sequence of statements.
In other words, a program is a recipe that gives a step-by-step
description of what to do to produce the desired result.

I Typically, the operations of imperative languages correspond to
common machine instructions.

I Control-flow (if, for, while, function calls, etc.)
Each control-flow construct can be implemented using branch,
jump, and call instructions.

I This correspondence between program operations and machine
instructions simplifies implementing a good compiler.

Functional programming (Erlang, lisp, scheme, Haskell, ML, . . .)
is a programming model that corresponds to mathematical
definitions.

I A program is a collection of definitions.
I These include definitions of expressions.
I Expressions can be evaluated to produce results.

See also: the LYSE explanation.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 4 / 20

http://learnyousomeerlang.com/introduction#what-is-erlang
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Declarative Programming – another way to say
“Functional”

A program is a collection of definitions, also called declarations.
Examples:

count3s([]) -> 0;
count3s([3 | Tl]) ->
1 + count3s(Tl);

count3s([| Tl]) ->
count3s(Tl).

factorial(0) -> 1;
factorial(N)

when is integer(N), N > 0 ->
N*factorial(N-1).

Functions are defined with a set of declarations that are in the
style of a mathematical definition.

I The definitions that we can write are restricted by the syntax of the
language so there is an “obvious” way to execute the program.

I More formally, “obvious” means λ-calculus.

Note: all code examples for this lecture are available at:
erl intro.erl

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 5 / 20

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Referential Transparency

This notion that a variable gets a value when it is declared and
that the value of the variable never changes is called referential
transparency.

I You’ll hear me use the term many times in class – I thought it would
be a good idea to let you know what it means. ,

We say that the value of the variable is bound to the variable.
Variables in functional programming are much like those in
mathematical formulas:

I If a variable appears multiple places in a mathematical formula, we
assume that it has the same value everywhere.

I This is the same in a functional program.
I This is not the case in an imperative program. We can declare x on

line 17; assign it a value on line 20; and assign it another value on
line 42.

I The value of x when executing line 21 is different than when
executing line 43.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Loops violate referential transparency

// vector dot-product
sum = 0.0;
for(i = 0; i < a.length; i++)
sum += a[i] * b[i];

// merge, as in merge-sort
while(a != null && b != null) {
if(a.key <= b.key) {
last->next = a;
last = a;
a = a->next;
last->next = null;

} else {
...

}
}

Loops rely on changing the values of variables.
Functional programs use recursion instead.
See also the LYSE explanation.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 7 / 20

http://learnyousomeerlang.com/recursion#hello-recursion
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Sequential Erlang

Example: from count3s to sum.
Encapsulating patterns with higher order functions.
Tuples

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 8 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

In Class Coding: list sum

Compute the sum of the elements of a list.
Review: The count 3s example from the Introduction slide deck:
count3s([]) -> 0; % The empty list has 0 threes

% A list whose head is 3 has one more 3 than its tail
count3s([3 | Tail]) -> 1 + count3s(Tail);

% A list whose head is not 3 has the same number of 3s as its tail
count3s([Other | Tail]) -> count3s(Tail).

In-class exercise: Apply the same pattern to create sum/1.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

In Class Coding: list sum

sum([]) -> ;

sum([Hd | Tl]) -> .

count3s had three patterns, but there are only two patterns in
the template above.
Do these two patterns cover all the cases?
Do we need other patterns?
Why?

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

The Pattern

Based on the functions for count3s and sum, how would you
write functions for:

prod(List) -> the product of the elements of List.
max(List) -> the largest element of List.

% max(List) has a “tricky” detail, the function max/2 is
% an Erlang built-in-function. We are defining max/1.
% The compiler has no problem telling them apart.

There’s a common pattern to all of these:
I Given an operation, Op(X, Y), and a list, List,
I combine all of the elements of List using op
I If List = [E1, E2, E3, ..., EN], we want to compute
I op(E1, op(E2, op(E3, ..., EN) ...))

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 11 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

The Fold Function

The fold operator:
% fold v1(Op, List) -> combine the elements of List using Op
fold v1(Op, [E]) -> E;
fold v1(Op, [Hd | Tl]) -> Op(Hd, fold v1(Op, Tl)).

Writing sum using fold v1

sum using fold v1(List) ->
fold v1(fun(E, Acc) -> E+Acc end,

List).

I But what if List is empty?
I Same problem occurs for prod, max, count3s, etc.

Solution: include an initial value for the accumulator Acc as a
parameter to fold.
In-class exercise: Implement fold/3 with an initial value Acc0 for
the accumulator.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Fold in the Erlang Library

The standard Erlang library provides two versions of fold
I foldl(Op, Acc0, List) combines the elements of List from

left-to-right.
I foldr(Op, Acc0, List) combines the elements of List from

right-to-left.
I foldl should be used if List can be very long because foldl is

tail recursive (see next lecture).

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Higher-Order Functions

fold is an example of a higher order function.
I fold takes a function as an argument, Op.
I fold uses this function to implement the specific fold operation that

the programmer wants.
Higher-order functions can

I Take functions as arguments (e.g. fold), or
I Return functions as a result.

In-class exercise: Implement prod/1 and max/1 using a fold.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

More Fold Examples

Longest run of zeros.
I longest 0 run(List) -> the length of the longest sequence of

consecutive 0s in List.
I Example: longest 0 run([0, 1, 0, 0, 1, 0, 0, 0, 0,
1, 1, 0, 1, 0, 0, 1]) -> 4.

I Can we implement longest 0 run(List) using fold?
I Similar problems:

F longest run(Key, List) -> the length of the longest sequence
of consecutive elements with value Key in List.

F longest ascending(List) -> the length of the longest
sequence of consecutive ascending values in List.

What makes these problems different than our original examples
for fold (i.e. count3s, sum, prod, and max)?

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Accumulators with multiple values
We need a way for our accumulator function to return multiple
values.
For the longest run(Key, List) problem, what does the
accumulator need to contain?
If you find functional programming to be a new way of thinking:

I Just for a moment, think of how you would write longest run
using a for-loop or while-loop?

I What variables did you use to pass information from one loop
iteration to the next?

I This should let you know what you need to use for the accumulator
value for an implementation using fold.

Once we’ve figured out what should be in the accumulator, we
could use

I A list: the Dr. Racket approach.
I A tuple: generally better Erlang “style”
I Erlang also has records, but the syntax is kind of awkward. Even

so, records can be the right choice when making bigger systems
(i.e. bigger than what we’ll be doing in class).

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Tuples

tuples:
Construction: {1, dog, "called Rover"}
Operations: element, setelement, tuple size.
Lists vs. Tuples:

I Lists are typically used for an arbitrary number of elements of the
same “type” – like arrays in C, Java,

I Tuples are typically used for an fixed number of elements of the
varying “types” – likes a struct in C or an object in Java.

I Tuples often make good accumulators for fold.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 17 / 20

http://learnyousomeerlang.com/starting-out-for-real#tuples
http://erlang.org/doc/reference_manual/data_types.html#id68683
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

longest run(Key, List)

Design questions:
I What should the elements of the accumulator tuple be?
I What should the initial value of the accumulator, Acc0, be?
I How should a new accumulator tuple be computed from the

previous one and the new list element?
I How should the return value of longest run/2 be computed from

the final accumulator value?

In-class exercise: implement longest run/2.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Preview
September 10: Processes and Messages

Reading: Learn You Some Erlang, The Hitchhiker’s Guide. . . and
More on Multprocessing

Homework: Homework 1 goes out (due Sept. 19) – Erlang programming
Mini-Assignment: PIKA 1 due 1:00pm
Mini-Assignment: PIKA 2 goes out (due Sept. 14) – Reduce

September 12: Reduce – The Algorithm
Reading: Learn You Some Erlang, Errors and Exceptions through

A Short Visit to Common Data Structures
September 14: Reduce – The Pattern

Reading: Lin & Snyder, chapter 5, pp. 112–125
September 17: Scan

Homework: Homework 1 deadline for early-bird bonus (11:59pm)
Homework 2 goes out (due Sept. 31) – Reduce and Scan

September 19: Reduce & Scan Examples
Homework: Homework 1 due 11:59pm

September 21 – 26: Parallel Architecture
Sept. 28 – Oct. 5: Performance Analysis
October 8 – 15: Sorting
October 17: Intro. to CUDA
October 19: Midterm review
October 22: Midterm
Oct. 24 – Nov. 30: Data Parallel Computing, GPUs, and CUDA

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 19 / 20

http://learnyousomeerlang.com
http://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency
http://learnyousomeerlang.com/more-on-multiprocessing
http://learnyousomeerlang.com
http://learnyousomeerlang.com/errors-and-exceptions
http://learnyousomeerlang.com/a-short-visit-to-common-data-structures
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (1 of 7)
What is referential transparency?
Why don’t functional languages have for-loops or while-loops?
What is pattern matching?

I Consider the function non decreasing too many ifs(List) below
that returns true iff each element of List is greater than or equal to the
element that came before it.

I Write a non decreasing function using pattern matching.
non decreasing should produce the same results as
non decreasing too many ifs, but the code should be simpler and
easier to read.

non decreasing too many ifs(X) ->
if is list(X) ->

if X==[] -> true; % an empty list is non-decreasing
tl(X) == [] -> true; % a singleton list is non-decreasing
true -> (hd(X) =< hd(tl(X)))

and non decreasing too many ifs(tl(X))
end;

not is list(X) ->
error("non decreasing too many ifs(X): X is not a list")

end.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 20 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (2 of 7)
Some of these are from material in this lecture, some are from
material in the assigned readings from Learn You Some Erlang
(i.e. Introduction through Higher-Order Functions), some are from
both.
What is an Erlang atom? Give an example of a use of an atom.
If X and Y are Erlang numbers, what is the difference between X
/ Y and X div Y ?
What is the special role of of Name as the name of an Erlang
variable?
What is the difference between an Erlang list and an Erlang tuple?

I Write an expression for the list that has the elements 1, 2, and 3 in
ascending order.

I Write an expression for the tuple that has the elements 1, 2, and 3
in ascending order.

I Describe the typical uses of lists and tuples.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 21 / 20

http://learnyousomeerlang.com
http://learnyousomeerlang.com/introduction
http://learnyousomeerlang.com/higher-order-functions
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (3 of 7)
What is a fun expression? Give an example.
What does the Erlang shell print when you type

[104,101,108,108,111,32,119,111,114,108,100].
at the Erlang prompt? Why? This is kind-of a trick question. Think
about it. Then try it for real in an actual Erlang shell to check your
answer.
Let neighbours(List) be a function that returns a list of tuples
where each tuple consists of two, successive elements of List.
For example:

neighbours([]) -> [];
neighbours([1]) -> [];
neighbours([1, 2]) -> [{1,2}];
neighbours([1, 2, 3]) -> [{1,2}, {2,3}];
neighbours([1, 2, 3, a, b, c]) ->

[{1,2}, {2,3}, {3,a}, {a,b}, {b,c}];
Write an implementation of neighbours. Of course, you should
use pattern matching.
See also zip.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 22 / 20

http://erlang.org/doc/man/lists.html#zip-2
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (4 of 7)
Consider the code below for flattening a nested list.
Write a flatten function using pattern matching. flatten
should produce the same results as flatten too many ifs, but
the code should be simpler and easier to read.

flatten too many ifs(X) ->
if is list(X) ->

if X==[] -> X; % X is the empty list
true ->

FlatHead =
if is list(hd(X)) -> flatten too many ifs(hd(X));

true -> [hd(X)]
end,

FlatTail = flatten too many iffs(tl(X)),
FlatHead ++ FlatTail

end;
not is list(X) ->

error("flatten too many ifs(X): X is not a list")
end.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 23 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (5 of 7)
Extra credit – What’s the prof thinking?!! How can there be extra
credit for review questions that aren’t going to be graded?
My first solution to flatten uses three patterns. I’ll write count(X)
to denote the “size” of X, where
count([Hd | Tl]) -> count(Hd) + count(Tl);
count(Tuple) when is tuple(Tuple) -> count(tuple to list(Tuple));
count() -> 1.

count(X) returns the number of leaves of X plus the number of lists
or tuples used in constructing X.
However, flatten too many ifs(X) has worst-case time
complexity that is quadratic in X. Show how to construct such
worst-case example of X. If you want to go all-out Erlang, you can
write a function worst flat(N) -> X such that count(X) == N
and the run time for flatten too many ifs(X) grows as N2.
More “extra credit”. Write an implementation of flatten such that
flatten(X) runs in time linear in count(X).
My solution is tail-recursive. I defined a helper function. The main
function and the helper are a total of three lines of code.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 24 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (6 of 7)
This lecture described the higher-order function fold and
mentioned its implementations in the Erlang standard library as
foldl and foldr. Here, we will consider some other
higher-order that will make your programming life easier.
filter(Pred, List) returns the elements of List for which
the function Pred returns true.

I Example – select multiples of 3.
1> L = seq(1,10).
[1,2,3,4,5,6,7,8,9,10].
2> filter(fun(X) -> (X rem 3) == 0 end, L).
[3,6,9].

I Use filter and length to implement count3s.
all(Pred, List) returns true iff every element of List is
true. If List has an element that is not equal to true, the first
such element must be false.

I Use all and neighbours to implement non decreasing.
I See also: any.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 25 / 20

http://erlang.org/doc/man/lists.html#foldl-3
http://erlang.org/doc/man/lists.html#foldr-3
http://erlang.org/doc/man/lists.html#filter-2
http://erlang.org/doc/man/lists.html#seq-2
http://erlang.org/doc/man/lists.html#filter-2
http://erlang.org/doc/man/lists.html#filter-2
http://erlang.org/doc/man/erlang.html#length-1
http://erlang.org/doc/man/lists.html#all-2
http://erlang.org/doc/man/lists.html#all-2
http://erlang.org/doc/man/lists.html#any-2
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Review Questions (7 of 7)
We’re going to make a simple calculator. Let
calc help(Acc, {’+’, Val}) -> Acc + Val;
calc help(Acc, {’-’, Val}) -> Acc - Val;
calc help(Acc, {’~’, Val}) -> Val - Acc;
calc help(Acc, {’*’, Val}) -> Acc * Val;
calc help(Acc, {’/’, Val}) -> Acc / Val;
calc help(Acc, {’\\’, Val}) -> Val / Acc.

calc l(Acc0, Ops) ->
lists:foldl(fun(Op, Acc) -> calc help(Acc, Op) end,

Acc0, Ops).

calc r(Acc0, Ops) ->
lists:foldr(fun(Op, Acc) -> calc help(Acc, Op) end,

Acc0, Ops).

Try
erl intro:calc l(5, [{’+’, 7}, {’/’, 3}, {’-’, 2}, {’*’, 10}]).
erl intro:calc r(5, [{’+’, 7}, {’/’, 3}, {’-’, 2}, {’*’, 10}]).

I Why do calc l and calc r give different results?
I Which makes the more “reasonable” calculator?

Add another operation to the calculator, e.g. remainder, square-root,
exponentiation, or anything else that you like.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 26 / 20

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Supplementary Material

Erlang resources
Common issues with lists
Staying sane in spite of Erlang punctuation
Erlang atoms
A few hints for using the Erlang shell

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 27 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Erlang Resources

LYSE – you should be reading this already!
Install Erlang on your computer

I Erlang solutions provides packages for and the most common linux
distros
https://www.erlang-solutions.com/resources/download.html

I Note: some linux distros come with Erlang pre-installed, but it might be an old
version. You should probably install from the link above.

http://www.erlang.org
I Searchable documentation

http://erlang.org/doc/search/
I Language reference

http://erlang.org/doc/reference_manual/users_guide.html
I Documentation for the standard Erlang library

http://erlang.org/doc/man_index.html

The CPSC 418 Erlang Library
I Documentation

http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/doc/index.html
I .tgz (source, and pre-compiled .beam)

http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/erl.tgz

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 28 / 20

http://learnyousomeerlang.com
https://www.erlang-solutions.com/resources/download.html
http://www.erlang.org
http://erlang.org/doc/search/
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/man_index.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Remarks about Constructing Lists

It’s easy to confuse [A, B] and [A | B].
This often shows up as code ends up with crazy, nested lists; or
code that crashes; or code that crashes due to crazy, nested lists;
. . . .
Example: let’s say I want to write a function divisible drop(N,
L) that removes all elements from list L that are divisible by N:

divisible drop(N, []) -> []; % the usual base case
divisible drop(N, [A | Tail]) ->

if A rem N == 0 -> divisible drop(N, Tail);
A rem N /= 0 -> [A | divisible drop(N, Tail)]

end.

It works – see the code in erl intro.erl.
3> erl intro:divisible drop(3, [0, 1, 4, 17, 42, 100]).
[1,4,17,100]

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 29 / 20

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Misconstructing Lists

Working with divisible drop from the previous slide. . .
Now, change the second alternative in the if to

A rem N /= 0 -> [A, divisible drop(N, Tail)]
Trying the previous test case:

4> erl intro:divisible drop(3, [0, 1, 4, 17, 42, 100]).
[1,[4,[17,[100,[]]]]]

Moral: If you see a list that is nesting way too much, check to see
if you wrote a comma where you should have used a |.
Restore the code and then change the second alternative for
divisible drop to divisible drop(N, [A, Tail])
-> Trying our previous test:

5> erl intro:divisible drop(3, [0, 1, 4, 17, 42, 100]).

** exception error: no function clause matching...

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 30 / 20

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/lecture//src/erl_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Punctuation
Erlang has lots of punctuation: commas, semicolons, periods, and
end.
It’s easy to get syntax errors or non-working code by using the
wrong punctuation somewhere.
Rules of Erlang punctuation:

I Erlang declarations end with a period: .
I A declaration can consist of several alternatives.

F Alternatives are separated by a semicolon: ;
F Note that many Erlang constructions such as case, fun, if, and

receive can have multiple alternatives as well.
I A declaration or alternative can be a block expression

F Expressions in a block are separated by a comma: ,
F The value of a block expression is the last expression of the block.

I Expressions that begin with a keyword end with end
F case Alternatives end
F fun Alternatives end
F if Alternatives end
F receive Alternatives end

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 31 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Remarks about Atoms
An atom is a special constant.

I Atoms can be compared for equality.
I Actually, any two Erlang can be compared for equality, and any two

terms are ordered.
I Each atom is unique.

Syntax of atoms
I Anything that looks like an identifier and starts with a lower-case

letter, e.g. x.
I Anything that is enclosed between a pair of single quotes, e.g. ’47
BIG apples’.

I Some languages (e.g. Matlab or Python) use single quotes to
enclose string constants, some (e.g. C or Java) use single quotes
to enclose character constants.

F But not Erlang.
F The atom ’47 big apples’ is not a string or a list, or a character

constant.
F It’s just its own, unique value.

I Atom constants can be written with single quotes, but they are
not strings.

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 32 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Avoiding Verbose Output

Sometimes, when using Erlang interactively, we want to declare a
variable where Erlang would spew enormous amounts of
“uninteresting” output were it to print the variable’s value.

I We can use a comma (i.e. a block expression) to suppress such
verbose output.

I Example
6> L1 to 5 = seq(1, 5).
[1, 2, 3, 4, 5].
7> L1 to 5M = seq(1, 5000000), ok.
ok
8> length(L1 to 5M).
5000000
9>

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 33 / 20

http://erlang.org/doc/man/lists.html#seq-2
http://erlang.org/doc/man/lists.html#seq-2
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Forgetting Bindings (in the shell)

Referential transparency means that bindings are forever.
I This can be nuisance when using the Erlang shell.
I Sometimes we assign a value to a variable for debugging purposes.
I We’d like to overwrite that value later so we don’t have to keep

coming up with more names.
In the Erlang shell, f(Variable). makes the shell “forget” the
binding for the variable.

9> X = 2+3.
5.
10> X = 2*3.

** exception error: no match of right hand side value 6.
11> f(X).
ok
12> X = 2*3.
6
13>

Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 34 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

Table of Contents
Functional Programming

I hello world
I Referential Transparency
I Loops violate referential transparency

Sequential Erlang
I list sum
I Higher order functions, e.g. fold
I Tuples

Preview & Review
I Preview
I Review Questions

Supplementary Material
I Erlang Resources
I Remarks about Constructing Lists
I Punctuation
I Remarks about Atoms
I Avoiding Verbose Output
I Forgetting Bindings (in the shell)

Table of Contents
Greenstreet Introduction to Erlang CpSc 418 – Sep. 7, 2018 35 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_7
https://en.wikipedia.org/wiki/2018

