
CpSc 418 Final Exam Review

The questions in this review use convolution as an example. I chose convolution because convolution was
covered in two lectures; convolution has an big role in signal processing (e.g. multimedia), machine learning,
communication systems (e.g. mobile computing), and many other areas; and we haven’t had a HW question
about it yet. I’m using convolution to cover a wide range of topics from the term such as: speed-up, work-
span, Amdahl’s Law, Brent’s Law, communication costs (e.g. λ), network bandwidth constraints, memory
bandwidth constraints (e.g. CGMA), parallel architectures, SIMD and message-passing paradigms, etc.

The actual final will cover the same range of topics – not necessarily the exact same choices as this
assignment, but the sample here is representative. The final exam will not base all of the questions on a
single algorithm. We’ve covered quite a few algorithms: reduce, scan, map (i.e. “embarrassingly parallel” such
as the Monte Carlo simulation problem in HW2, the recurrences in HW5), sorting, matrix multiplication,
and convolution.

1. Convolution and multiplication.
Let x0, x1, . . . , xn be a sequence of numbers. Likewise, let y0, y1, . . . , ym be another sequence of
numbers. We write value(x, b) to denote the “value” of the sequence x as a base-b number:

value(x, b) =
n∑

i=0
xib

i

Let z = x#y denote the convolution of x and y:

zi =
i∑

j=0
xjyi−j

where we treat xj as 0 if j > n and yi−j = 0 if i− j > m. Show that

value(x#y, b) = value(x, b) · value(y, b)

where · denotes ordinary, scalar multiplication.
Example: let b = 10 so we get the familiar, decimal representation of numbers. Let X = [1,2,3].
value(X, 10) = 321 – the list X is least-significant digit first. Let Y = [4,7,9,2]. value(Y, 10) =
2974. From the definition of convolution, conv(X, Y) -> [4,15,35,41,31,6], and

value(conv(X,Y),10) = value([4,15,35,41,31,6],10) = 954654 = 321*2974.
Code for value and conv is provided in hw6.erl.
Note: this connection between convolution and multiplication is a key part of many “fast” algorithms
for multiplying large numbers, i.e. numbers with thousands of digits. A fast algorithm for convolution
can be used to obtain a fast algorithm for multiplication.

2. Systolic Convolution
Consider the the systolic algorithm for convolution shown in class. In this algorithm we are given two
vectors A = (a1, ..., an) and B = (b1, ..., bn) of size n and an array of cells from C2n down to C1, going
from left to right.
The algorithm proceeded as follows. 1. First we send vector A into the cells from the left where a
delay, denoted by •, was added between consecutive elements of A (i.e., a1, •, a2, •, ...) whereby on
time step 1, a1 enters cell C2n and proceeds to the right on each time step. Due to the delay a2 enters
cell C2n at time step 3, etc..
2. Similarly, we reverse the B vector and add a delay at the start of the B vector as well as between
every consecutive element (i.e., •, bn, •, bn−1, ...) whereby on time step 2, bn enters cell C1 and
proceeds to the left on each time step. Due to the delay bn−1 enters on cell C1 at time step 3, etc..

1

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/6/src/hw6.erl


3. Finally, each cell Ck is initialized to 0 and whenever ai and bj meet in cell Ck we perform the
appropriate convolution operation and accumulate it at Ck (e.g. ck = ck + ai ∗ bj).
Prove that this algorithm correctly computes the convolution where cell Ck computes the sum of ai

and bj such that i+ j = k− 1. What is the total number of steps to perform the computation? (Hint:
derive formulas giving the location of ai and bj at step t.)

3. GPU Convolution
Often, we want to compute the convolution of X and Y where X is large (e.g. thousands or millions
of elements) and Y is of moderate size (e.g. 10 to 100 elements). To compute such a convolution on a
GPU, we can divide X across blocks. Let m be the number of elements in Y If we write Z = X#Y ,
we note that Zi depends on Xi+1−m through Xi and all of Y . Thus, a block that holds n values of
X can compute n + 1 − m values of Z. This also means that blocks will segments of X that overlap
slightly on their ends. We can keep this overlap relatively small if the number of elements of X that a
block can store in shared memory is much larger than the number of elements of Y .
Let’s use all 48Kbytes of the shared memory for a block to hold X. If each element of X is a four-byte
float, then a block can hold 48K/4 = 12K = 12*1024 = 12288 elements of X. If Y has length m, then
the block can compute the convolution for 12289 −m elements of x.

(a) How many floating point operations are required to compute one element of Z?
(b) Can the computation of Z take advantage of fused multiply-add instructions?
(c) How many global memory reads does a block perform to copy the 12288 elements of X from global

memory into shared memory?
(d) Can these global memory accesses be coalesced?
(e) How many global memory writes are required to store the values of Z computed by this block?
(f) Can these global memory accesses be coalesced?
(g) What is the CGMA for this computation? Hint: it depends on m.
(h) How large must m be to achieve a CGMA of 80?

4. Message Passing Convolution
Consider computing Z = X#Y on a message passing computer with P processors where X has N
elements, Y has M elements. We will assume that N >> M , each processor holds P/N elements of
X, and all M elements of Y . To compute the convolution, processor pi (for 1 ≤ i ≤ P ):

• sends the last m− 1 of its segment of X to processor pi+1 (if i < P ),
• receives m− 1 elements from processor pi−1 (if i > 1)
• computes the the convolution of its N/P elements of Z. I.e. pi has elements N

P (i− 1) · · · N
P i− 1

of X and computes elements N
P (i− 1) · · · N

P i− 1 of Z.

Assume that each processor can perform a multipy-and-add in one unit of time. Assume that sending
and receiving a message of M − 1 elements takes time λ+M − 1 (total for the send and the receive).
You can assume that λ is big enough that we don’t care about the difference between λ+M − 1 and
λ+M .

(a) How much time does it take each processor pi to send a message to pi+1 and receive a message
from pi− 1? Don’t worry about the end cases with i = 1 or i = P .

(b) How much time does it take processor pi to compute its values for Z after receiving the message
from pi−1?

(c) What is the speed-up? Write your answer as a function of N , M , P , and λ. Give values for the
speed-up when

2



• N = 1000000, M = 50, P = 100, and λ = 10000.
• N = 1000000, M = 50, P = 1000, and λ = 10000.
• N = 1000000, M = 10, P = 1000, and λ = 10000.

(d) What is the parallel-efficiency? Write your answer as a function of N , M , P , and λ. Give values
for the speed-up for the same values listed above.

5. A few more questions

(a) Consider implementing the convolution described in the previous problem on a mesh of 64 × 64
processors. Is the cross-section bandwidth a bottleneck for this computation or can we just
consider the bandwidth for links between neighbouring processors? Justify your answer.

(b) What is the work for a convolving a vector of length N with a vector of length M? Justify your
answer.

(c) What is the span for a convolving a vector of length N with a vector of length M? Justify your
answer.

(d) Use Brent’s Lemma to bound the speed-up for convolution with
• N = 1000000, M = 50, P = 100, and λ = 1000.
• N = 1000000, M = 50, P = 1000, and λ = 1000.
• N = 1000000, M = 10, P = 500, and λ = 1000.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

3

http://creativecommons.org/licenses/by/4.0/

