The questions in this review use convolution as an example. I chose convolution because convolution was covered in two lectures; convolution has an big role in signal processing (e.g. multimedia), machine learning, communication systems (e.g. mobile computing), and many other areas; and we haven't had a HW question about it yet. I'm using convolution to cover a wide range of topics from the term such as: speed-up, workspan, Amdahl's Law, Brent's Law, communication costs (e.g. λ), network bandwidth constraints, memory bandwidth constraints (e.g. CGMA), parallel architectures, SIMD and message-passing paradigms, etc.

The actual final will cover the same range of topics - not necessarily the exact same choices as this assignment, but the sample here is representative. The final exam will not base all of the questions on a single algorithm. We've covered quite a few algorithms: reduce, scan, map (i.e. "embarrassingly parallel" such as the Monte Carlo simulation problem in HW2, the recurrences in HW5), sorting, matrix multiplication, and convolution.

1. Convolution and multiplication.

Let $x_{0}, x_{1}, \ldots, x_{n}$ be a sequence of numbers. Likewise, let $y_{0}, y_{1}, \ldots, y_{m}$ be another sequence of numbers. We write value (x, b) to denote the "value" of the sequence x as a base- b number:

$$
\operatorname{value}(x, b)=\sum_{i=0}^{n} x_{i} b^{i}
$$

Let $z=x \# y$ denote the convolution of x and y :

$$
z_{i}=\sum_{j=0}^{i} x_{j} y_{i-j}
$$

where we treat x_{j} as 0 if $j>n$ and $y_{i-j}=0$ if $i-j>m$. Show that

$$
\operatorname{value}(x \# y, b)=\text { value }(x, b) \cdot \operatorname{value}(y, b)
$$

where • denotes ordinary, scalar multiplication.
Example: let $b=10$ so we get the familiar, decimal representation of numbers. Let $X=[1,2,3]$. value $(X, 10)=321-$ the list X is least-significant digit first. Let $Y=[4,7,9,2]$. value $(Y, 10)=$ 2974. From the definition of convolution, conv (X, Y) \rightarrow [$4,15,35,41,31,6]$, and
value $(\operatorname{conv}(X, Y), 10)=\operatorname{value}([4,15,35,41,31,6], 10)=954654=321 * 2974$.
Code for value and conv is provided in hw6.erl.
Note: this connection between convolution and multiplication is a key part of many "fast" algorithms for multiplying large numbers, i.e. numbers with thousands of digits. A fast algorithm for convolution can be used to obtain a fast algorithm for multiplication.

2. Systolic Convolution

Consider the the systolic algorithm for convolution shown in class. In this algorithm we are given two vectors $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$ of size n and an array of cells from $C_{2 n}$ down to C_{1}, going from left to right.
The algorithm proceeded as follows. 1. First we send vector A into the cells from the left where a delay, denoted by \bullet, was added between consecutive elements of A (i.e., $a_{1}, \bullet, a_{2}, \bullet, \ldots$) whereby on time step $1, a_{1}$ enters cell $C_{2 n}$ and proceeds to the right on each time step. Due to the delay a_{2} enters cell $C_{2 n}$ at time step 3, etc..
2. Similarly, we reverse the B vector and add a delay at the start of the B vector as well as between every consecutive element (i.e., •, $b_{n}, \bullet, b_{n-1}, \ldots$) whereby on time step $2, b_{n}$ enters cell C_{1} and proceeds to the left on each time step. Due to the delay b_{n-1} enters on cell C_{1} at time step 3 , etc..
3. Finally, each cell C_{k} is initialized to 0 and whenever a_{i} and b_{j} meet in cell C_{k} we perform the appropriate convolution operation and accumulate it at C_{k} (e.g. $c_{k}=c_{k}+a_{i} * b_{j}$).
Prove that this algorithm correctly computes the convolution where cell C_{k} computes the sum of a_{i} and b_{j} such that $i+j=k-1$. What is the total number of steps to perform the computation? (Hint: derive formulas giving the location of a_{i} and b_{j} at step t.)

3. GPU Convolution

Often, we want to compute the convolution of X and Y where X is large (e.g. thousands or millions of elements) and Y is of moderate size (e.g. 10 to 100 elements). To compute such a convolution on a GPU, we can divide X across blocks. Let m be the number of elements in Y If we write $Z=X \# Y$, we note that Z_{i} depends on X_{i+1-m} through X_{i} and all of Y. Thus, a block that holds n values of X can compute $n+1-m$ values of Z. This also means that blocks will segments of X that overlap slightly on their ends. We can keep this overlap relatively small if the number of elements of X that a block can store in shared memory is much larger than the number of elements of Y.
Let's use all 48Kbytes of the shared memory for a block to hold X. If each element of X is a four-byte float, then a block can hold $48 \mathrm{~K} / 4=12 \mathrm{~K}=12^{*} 1024=12288$ elements of X. If Y has length m, then the block can compute the convolution for $12289-m$ elements of x.
(a) How many floating point operations are required to compute one element of Z ?
(b) Can the computation of Z take advantage of fused multiply-add instructions?
(c) How many global memory reads does a block perform to copy the 12288 elements of X from global memory into shared memory?
(d) Can these global memory accesses be coalesced?
(e) How many global memory writes are required to store the values of Z computed by this block?
(f) Can these global memory accesses be coalesced?
(g) What is the CGMA for this computation? Hint: it depends on m.
(h) How large must m be to achieve a CGMA of 80 ?

4. Message Passing Convolution

Consider computing $Z=X \# Y$ on a message passing computer with P processors where X has N elements, Y has M elements. We will assume that $N \gg M$, each processor holds P / N elements of X, and all M elements of Y. To compute the convolution, processor $p_{i}($ for $1 \leq i \leq P)$:

- sends the last $m-1$ of its segment of X to processor $p_{i+1}($ if $i<P)$,
- receives $m-1$ elements from processor p_{i-1} (if $i>1$)
- computes the the convolution of its N / P elements of Z. I.e. p_{i} has elements $\frac{N}{P}(i-1) \cdots \frac{N}{P} i-1$ of X and computes elements $\frac{N}{P}(i-1) \cdots \frac{N}{P} i-1$ of Z.

Assume that each processor can perform a multipy-and-add in one unit of time. Assume that sending and receiving a message of $M-1$ elements takes time $\lambda+M-1$ (total for the send and the receive). You can assume that λ is big enough that we don't care about the difference between $\lambda+M-1$ and $\lambda+M$.
(a) How much time does it take each processor p_{i} to send a message to p_{i+1} and receive a message from $p i-1$? Don't worry about the end cases with $i=1$ or $i=P$.
(b) How much time does it take processor p_{i} to compute its values for Z after receiving the message from p_{i-1} ?
(c) What is the speed-up? Write your answer as a function of N, M, P, and λ. Give values for the speed-up when

- $N=1000000, M=50, P=100$, and $\lambda=10000$.
- $N=1000000, M=50, P=1000$, and $\lambda=10000$.
- $N=1000000, M=10, P=1000$, and $\lambda=10000$.
(d) What is the parallel-efficiency? Write your answer as a function of N, M, P, and λ. Give values for the speed-up for the same values listed above.

5. A few more questions

(a) Consider implementing the convolution described in the previous problem on a mesh of 64×64 processors. Is the cross-section bandwidth a bottleneck for this computation or can we just consider the bandwidth for links between neighbouring processors? Justify your answer.
(b) What is the work for a convolving a vector of length N with a vector of length M ? Justify your answer.
(c) What is the span for a convolving a vector of length N with a vector of length M ? Justify your answer.
(d) Use Brent's Lemma to bound the speed-up for convolution with

- $N=1000000, M=50, P=100$, and $\lambda=1000$.
- $N=1000000, M=50, P=1000$, and $\lambda=1000$.
- $N=1000000, M=10, P=500$, and $\lambda=1000$.

