
CpSc 418 Homework 5 Due: Nov. 27, 2018, 11:59pm
Early Bird: Nov. 26, 2018, 11:59pm

55 points.

Please submit your solution using the handin program. Submit your solution as
cs418 hw5

Your submission should consist of two files:

• hw5.cu: CUDA source code for the coding parts your solution.

• hw5.pdf PDF for the written response parts of your solution and the plots.

A templates for hw5.cu is available at
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu.

Please submit code that compiles without errors or warnings. If your code does not compile, we might give
you zero points on all of the programming problems. If we fix your code to make it compile, we will take off
lots of points for that service. If your code generates compiler warnings, we will take off points for that as
well, but not as many as for code that doesn’t compile successfully.

We will take off points for code that prints results unless we specifically asked for print-out. For this
assignment, the functions you write should return the specified values, but they should not print anything to
stdout. Using io:format when debugging is great, but you need to delete or comment-out such calls before
submitting your solution. Printing an error message to stdout when your function is called with invalid
arguments is acceptable but not required. Your code must fail with some kind of error when called with
invalid arguments.

1. Hello CUDA (25 points) The template file, hw5.cu provides CPU and GPU implementations of saxpy
along with a function to compare the CPU and GPU results, and functions for timing measurements.
Log on to one of the linXX.ugrad.cs.ubc.ca machines where 01 ≤ XX ≤ 25 – these have CUDA
capable GPUs. Copy hw5.cu, Makefile, and hw5.sh to a folder under your home directory. Make
sure that hw5.sh is executable: chmod +x hw5.sh You should be able to compile hw5.cu by giving
the command (at the linux shell prompt): make You can then run the saxpy test with the command:
./hw5.sh saxpy test 1000000 1.2 This generates vectors for x and y of length 1000000 and sets a to
1.2.
The provided Makefile is really simple. Likewise, hw5.sh just runs make to ensure that hw5.cu has
been compiled. If the make succeeds, hw5.sh runs ./hw5 with any arguments that you provided on the
command line.

• Why do we provide these files?
So you people won’t get stuck looking for nvcc or having problems with getting the right library
modules loaded.

• Should you try this at home?
Of course! You will probably need to modify the definition of NVCC in Makefile and the
LD_LIBRARY_PATH in hw5.sh to match your installation. Note that timing measurements should
be performed on one of the linXX.ugrad.cs.ubc.ca machines.

Congratulations! You have compiled and executed a CUDA program. you’re nearly done with this
first question.

(a) (6 points) You can measure the time to execute saxpy with lists of length N by giving the
commands:

1

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu
http://erlang.org/doc/man/io.html#format-2
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/Makefile
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.sh
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.sh
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/Makefile
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/Makefile
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.sh

$./hw5.sh saxpy time_kernel N % time to execute the kernel
$./hw5.sh saxpy time_gpu N % total time for GPU including memory copies between CPU and GPU
$./hw5.sh saxpy time_cpu N % total time when computing saxpy on the CPU

Make a table showing these three timing measurements for N = 10, 000, N = 100, 000, N =
1, 000, 000, N = 10, 000, 000, and N = 100, 000, 000. Make your timing measurements on one of
the linXX.ugrad.cs.ubc.ca machines and state which machine you used in your hw5.pdf.

(b) (2 points) Under what conditions is the GPU (i.e. time_kernel) faster than the CPU (i.e.
time_CPU)? Give a short explanation for the conditions under which time_kernel < time_cpu.

(c) (2 points) Under what conditions is the GPU including the memory transfers faster than the
CPU? Give a short explanation for the conditions under which time_gpu < time_cpu.

(d) (3 points)
• How many floating point operations does saxpy perform per array element?
• Give a one or two sentence justification for your answer.
• What choice of N from question 1a gives the highest number of floating point operations per

second?
(e) (3 points)

• How many bytes of global memory data (loads and stores) are transferred between the GPU
and its global memory per array element.

• Give a one or two sentence justification for your answer.
• What choice of N from question gives the highest memory bandwidth?

(f) (3 points) The GTX 1060 GPU (the GPUs in the linXX machines) is specified as having a peak
floating point performance of 3470 GFlops (base clock) or 3935 GFlops (boosted clock). What
percentage of the peak GFlops for the base-clock rate is achieved by saxpy? Include a short
explanation of your answer.

(g) (3 points) The GTX 1060 GPU (the GPUs in the linXX machines) is specified as having a
peak memory bandwidth of 192 Gbytes/sec. What percentage of the peak memory bandwidth is
achieved by saxpy? Include a short explanation of your answer.

(h) (3 points) Based on your timing measurements from question 1a, what is the time for a kernel
launch? Explain how you got your answer. Feel free to make more timing measurements and
include that data in your answer.

2. Recurrences (30 points)
Each year, I come up with a recurrence to compute. This gives you a chance to push for peak GFlops
without fighting a memory bandwidth bottleneck. Make your timing measurements on one of the
linXX.ugrad.cs.ubc.ca machines and state which machine you used in your hw5.pdf.

(a) (2 points) recur1 computes the recurrence

x[j+1] = x[j]− 1
4 y[j] + 1

8 (y[j])2 − (1/16)(x[j])3

y[j+1] = y[j] + 1
4 x[j] + 1

8 (x[j])2 − (1/16)(y[j])3

This recurrence is implemented by the function recur1_kernel and recur1_cpu in hw5.cu How
many floating point operations does recur1_kernel perform for each value of j?
Note 1: recur1_cpu performs the same number of floating point operations per value of j.
Note 2: if a multiplication and add can be performed as a fused multiply-add, count them as
two operations.

2

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu

x
-1 -0.5 0 0.5 1

y

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
recur1

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

y

-4

-3

-2

-1

0

1

2

3

4

recur2

recur1 recur2 – * indicates point where flag
changes

Figure 1: 2000 steps of recur1 and recur2 starting at x = 1, y = 0.

(b) (3 points) Use

hw5.sh recur1 time_kernel n=N m=M

to measure the throughput of recur1_kernel for various choices of N and M . Find choices of N
and M that maximize this throughput. Each choice should have a total run time of less than one
second. Report your data and the peak throughput.
Note: to maximize throughput, recur1_kernel calculates the sequence for multiple starting
points. N is the number of starting points. The test code uses the function init_data3 to
generate such data. The recurrence recur1 is “stable” (i.e. doesn’t diverge to ±∞) as long as
neither x nor y grows too large. I’m not sure how large is “too large”, but the values generated
by init_data3 are safe.

(c) (2 points) How many GFlops does recur1_kernel achieve with your peak-throughput choices
for N and M? What percentage of the peak floating-point rate of the GTX 1060 does the kernel
achieve?

(d) (5 points) recur2 computes the recurrence

x[j+1] = 0.38 ∗ x[j] + 0.32 ∗ y[j], if (|x[i]| > 2) ∧ (|y[i] > 2)
= 0.96 ∗ x[j]− 0.52 ∗ y[j], if flag ∧ ((|x[i]| ≤ 2) ∨ (|y[i] ≤ 2))
= 0.94 ∗ x[j] + 0.37 ∗ y[j], if ¬flag ∧ ((|x[i]| ≤ 2) ∨ (|y[i] ≤ 2))

y[j+1] = 0.25 ∗ x[j]− 0.64 ∗ y[j], if (|x[i]| > 2) ∧ (|y[i] > 2)
= 0.47 ∗ x[j]− 0.95 ∗ y[j], if flag ∧ ((|x[i]| ≤ 2) ∨ (|y[i] ≤ 2))
= −0.62 ∗ x[j] + 0.96 ∗ y[j], if ¬flag ∧ ((|x[i]| ≤ 2) ∨ (|y[i] ≤ 2))

flag[j+1] = ¬flag[j], if (|x[i]| > 2) ∧ (|y[i] > 2)
flag[j+1] = flag[j], if (|x[i]| ≤ 2) ∨ (|y[i] ≤ 2)

This recurrence is implemented by the function recur2_cpu in hw5.cu. Complete the implemen-
tation of recur2_kernel. This GPU version should compute the same result as recur2_cpu, for
example, as tested by

3

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu

hw5.sh recur2 test

Note: this recurrence is numerically unstable. It won’t blow up to ±∞, but if you start with
two, nearby initial points, the resulting sequences will diverge from each other. This means that
if you change any details to something that is mathematically equivalent but performs a different
sequence of floating point operations, the simple test in hw5.cu is likely to fail for everything
except for small values of m.

(e) (2 points) How many floating point operations does recur2_cpu perform for each value of j?
Presumably, your recur2_kernel will perform the same number of floating point operations per
value of j.

(f) (3 points) Use

hw5.sh recur2 time_kernel n=N m=M

to measure the throughput of recur2_kernel for various choices of N and M . Find choices of N
and M that maximize this throughput. Each choice should have a total run time of less than one
second. Report your data and the peak throughput.

(g) (3 points) Which kernel, recur1_kernel or recur2_kernel achieves the larger number of
GFlops. Briefly explain the key issue that accounts for the performance difference.

(h) (10 points) Revise recur1_kernel – call it recur1a_kernel to maximize its throughput. Any
optimizations are allowed, and if your code is faster than my solution, you will get extra credit
points. Here are some places you can start:

• C specifies that all floating point operations must be done using double precision arithmetic,
and rounded to single precision if the result is stored in a float. In general, GPUs have much
better single-precision performance than double-precision performance. The nvcc compiler
will generate single-precision operations if both operands are single precision floating point
numbers. Here’s the subtle catch: constants, such as 1.234 are double-precision. If you
write it with a trailing f, e.g. 1.234f, the constant is single precision. Try changing the
floating-point constants in recur1_kernel to single-precision.

• Experiment with the total number of blocks, the block size, and the number of recurrence
steps.

• Try loop unrolling. You could perform multiple steps of the recurrence for each execution
of the loop body, or you could modify a thread to handle multiple values of i (i.e. multiple
sequences of the recurrence) in a single thread.

• All optimizations are allowed – we will be tolerant of variations in the result due to round-off
errors, but your solution needs to be mathematically equivalent to the original problem.

Now that you know the rules:
i. Write your optimized recur1a_kernel.
ii. Give a brief explanation in your hw5.pdf of each optimization that you performed.
iii. What is GFlops achieved by your optimized kernel? What percentage of the peak GFlops for

a GTX 1060 does your kernel achieve?
iv. What is the speed-up of your kernel compared with recur1_cpu?

Note: you can go wild exploring the performance trade-offs of the GPU. If that’s fun, do it. You
can get full credit by doing a few simple optimizations and reporting the result.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

4

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/5/src/hw5.cu
http://creativecommons.org/licenses/by/4.0/

